Description: Reverse closure for a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nghmrcl2 | |- ( F e. ( S NGHom T ) -> T e. NrmGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( S normOp T ) = ( S normOp T ) |
|
| 2 | 1 | isnghm | |- ( F e. ( S NGHom T ) <-> ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( F e. ( S GrpHom T ) /\ ( ( S normOp T ) ` F ) e. RR ) ) ) |
| 3 | 2 | simplbi | |- ( F e. ( S NGHom T ) -> ( S e. NrmGrp /\ T e. NrmGrp ) ) |
| 4 | 3 | simprd | |- ( F e. ( S NGHom T ) -> T e. NrmGrp ) |