Metamath Proof Explorer


Theorem nghmrcl2

Description: Reverse closure for a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Assertion nghmrcl2 FSNGHomTTNrmGrp

Proof

Step Hyp Ref Expression
1 eqid SnormOpT=SnormOpT
2 1 isnghm FSNGHomTSNrmGrpTNrmGrpFSGrpHomTSnormOpTF
3 2 simplbi FSNGHomTSNrmGrpTNrmGrp
4 3 simprd FSNGHomTTNrmGrp