Metamath Proof Explorer


Theorem isnghm

Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1 N=SnormOpT
Assertion isnghm FSNGHomTSNrmGrpTNrmGrpFSGrpHomTNF

Proof

Step Hyp Ref Expression
1 nmofval.1 N=SnormOpT
2 1 nghmfval SNGHomT=N-1
3 2 eleq2i FSNGHomTFN-1
4 n0i FN-1¬N-1=
5 nmoffn normOpFnNrmGrp×NrmGrp
6 5 fndmi domnormOp=NrmGrp×NrmGrp
7 6 ndmov ¬SNrmGrpTNrmGrpSnormOpT=
8 1 7 eqtrid ¬SNrmGrpTNrmGrpN=
9 8 cnveqd ¬SNrmGrpTNrmGrpN-1=-1
10 cnv0 -1=
11 9 10 eqtrdi ¬SNrmGrpTNrmGrpN-1=
12 11 imaeq1d ¬SNrmGrpTNrmGrpN-1=
13 0ima =
14 12 13 eqtrdi ¬SNrmGrpTNrmGrpN-1=
15 4 14 nsyl2 FN-1SNrmGrpTNrmGrp
16 1 nmof SNrmGrpTNrmGrpN:SGrpHomT*
17 ffn N:SGrpHomT*NFnSGrpHomT
18 elpreima NFnSGrpHomTFN-1FSGrpHomTNF
19 16 17 18 3syl SNrmGrpTNrmGrpFN-1FSGrpHomTNF
20 15 19 biadanii FN-1SNrmGrpTNrmGrpFSGrpHomTNF
21 3 20 bitri FSNGHomTSNrmGrpTNrmGrpFSGrpHomTNF