Metamath Proof Explorer


Theorem nmoffn

Description: The function producing operator norm functions is a function on normed groups. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Assertion nmoffn normOpFnNrmGrp×NrmGrp

Proof

Step Hyp Ref Expression
1 df-nmo normOp=sNrmGrp,tNrmGrpfsGrpHomtsupr0+∞|xBasesnormtfxrnormsx*<
2 eqid fsGrpHomtsupr0+∞|xBasesnormtfxrnormsx*<=fsGrpHomtsupr0+∞|xBasesnormtfxrnormsx*<
3 ssrab2 r0+∞|xBasesnormtfxrnormsx0+∞
4 icossxr 0+∞*
5 3 4 sstri r0+∞|xBasesnormtfxrnormsx*
6 infxrcl r0+∞|xBasesnormtfxrnormsx*supr0+∞|xBasesnormtfxrnormsx*<*
7 5 6 mp1i fsGrpHomtsupr0+∞|xBasesnormtfxrnormsx*<*
8 2 7 fmpti fsGrpHomtsupr0+∞|xBasesnormtfxrnormsx*<:sGrpHomt*
9 ovex sGrpHomtV
10 xrex *V
11 fex2 fsGrpHomtsupr0+∞|xBasesnormtfxrnormsx*<:sGrpHomt*sGrpHomtV*VfsGrpHomtsupr0+∞|xBasesnormtfxrnormsx*<V
12 8 9 10 11 mp3an fsGrpHomtsupr0+∞|xBasesnormtfxrnormsx*<V
13 1 12 fnmpoi normOpFnNrmGrp×NrmGrp