Metamath Proof Explorer


Theorem nmoffn

Description: The function producing operator norm functions is a function on normed groups. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Assertion nmoffn
|- normOp Fn ( NrmGrp X. NrmGrp )

Proof

Step Hyp Ref Expression
1 df-nmo
 |-  normOp = ( s e. NrmGrp , t e. NrmGrp |-> ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) ) )
2 eqid
 |-  ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) ) = ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) )
3 ssrab2
 |-  { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } C_ ( 0 [,) +oo )
4 icossxr
 |-  ( 0 [,) +oo ) C_ RR*
5 3 4 sstri
 |-  { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } C_ RR*
6 infxrcl
 |-  ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } C_ RR* -> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) e. RR* )
7 5 6 mp1i
 |-  ( f e. ( s GrpHom t ) -> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) e. RR* )
8 2 7 fmpti
 |-  ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) ) : ( s GrpHom t ) --> RR*
9 ovex
 |-  ( s GrpHom t ) e. _V
10 xrex
 |-  RR* e. _V
11 fex2
 |-  ( ( ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) ) : ( s GrpHom t ) --> RR* /\ ( s GrpHom t ) e. _V /\ RR* e. _V ) -> ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) ) e. _V )
12 8 9 10 11 mp3an
 |-  ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) ) e. _V
13 1 12 fnmpoi
 |-  normOp Fn ( NrmGrp X. NrmGrp )