Metamath Proof Explorer


Theorem nghmghm

Description: A normed group homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Assertion nghmghm FSNGHomTFSGrpHomT

Proof

Step Hyp Ref Expression
1 eqid SnormOpT=SnormOpT
2 1 isnghm FSNGHomTSNrmGrpTNrmGrpFSGrpHomTSnormOpTF
3 2 simprbi FSNGHomTFSGrpHomTSnormOpTF
4 3 simpld FSNGHomTFSGrpHomT