Metamath Proof Explorer


Theorem nic-bi2

Description: Inference to extract the other side of an implication from a 'biconditional' definition. (Contributed by Jeff Hoffman, 18-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nic-bi2.1
|- ( ( ph -/\ ps ) -/\ ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) )
Assertion nic-bi2
|- ( ps -/\ ( ph -/\ ph ) )

Proof

Step Hyp Ref Expression
1 nic-bi2.1
 |-  ( ( ph -/\ ps ) -/\ ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) )
2 1 nic-isw2
 |-  ( ( ph -/\ ps ) -/\ ( ( ps -/\ ps ) -/\ ( ph -/\ ph ) ) )
3 nic-id
 |-  ( ps -/\ ( ps -/\ ps ) )
4 2 3 nic-iimp1
 |-  ( ps -/\ ( ph -/\ ps ) )
5 4 nic-idel
 |-  ( ps -/\ ( ph -/\ ph ) )