| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmofval.1 |
|- N = ( S normOp T ) |
| 2 |
|
nmofval.2 |
|- V = ( Base ` S ) |
| 3 |
|
nmofval.3 |
|- L = ( norm ` S ) |
| 4 |
|
nmofval.4 |
|- M = ( norm ` T ) |
| 5 |
|
nmolb2d.z |
|- .0. = ( 0g ` S ) |
| 6 |
|
nmolb2d.1 |
|- ( ph -> S e. NrmGrp ) |
| 7 |
|
nmolb2d.2 |
|- ( ph -> T e. NrmGrp ) |
| 8 |
|
nmolb2d.3 |
|- ( ph -> F e. ( S GrpHom T ) ) |
| 9 |
|
nmolb2d.4 |
|- ( ph -> A e. RR ) |
| 10 |
|
nmolb2d.5 |
|- ( ph -> 0 <_ A ) |
| 11 |
|
nmolb2d.6 |
|- ( ( ph /\ ( x e. V /\ x =/= .0. ) ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
| 12 |
|
2fveq3 |
|- ( x = .0. -> ( M ` ( F ` x ) ) = ( M ` ( F ` .0. ) ) ) |
| 13 |
|
fveq2 |
|- ( x = .0. -> ( L ` x ) = ( L ` .0. ) ) |
| 14 |
13
|
oveq2d |
|- ( x = .0. -> ( A x. ( L ` x ) ) = ( A x. ( L ` .0. ) ) ) |
| 15 |
12 14
|
breq12d |
|- ( x = .0. -> ( ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) <-> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) ) |
| 16 |
11
|
anassrs |
|- ( ( ( ph /\ x e. V ) /\ x =/= .0. ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
| 17 |
|
0le0 |
|- 0 <_ 0 |
| 18 |
9
|
recnd |
|- ( ph -> A e. CC ) |
| 19 |
18
|
mul01d |
|- ( ph -> ( A x. 0 ) = 0 ) |
| 20 |
17 19
|
breqtrrid |
|- ( ph -> 0 <_ ( A x. 0 ) ) |
| 21 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
| 22 |
5 21
|
ghmid |
|- ( F e. ( S GrpHom T ) -> ( F ` .0. ) = ( 0g ` T ) ) |
| 23 |
8 22
|
syl |
|- ( ph -> ( F ` .0. ) = ( 0g ` T ) ) |
| 24 |
23
|
fveq2d |
|- ( ph -> ( M ` ( F ` .0. ) ) = ( M ` ( 0g ` T ) ) ) |
| 25 |
4 21
|
nm0 |
|- ( T e. NrmGrp -> ( M ` ( 0g ` T ) ) = 0 ) |
| 26 |
7 25
|
syl |
|- ( ph -> ( M ` ( 0g ` T ) ) = 0 ) |
| 27 |
24 26
|
eqtrd |
|- ( ph -> ( M ` ( F ` .0. ) ) = 0 ) |
| 28 |
3 5
|
nm0 |
|- ( S e. NrmGrp -> ( L ` .0. ) = 0 ) |
| 29 |
6 28
|
syl |
|- ( ph -> ( L ` .0. ) = 0 ) |
| 30 |
29
|
oveq2d |
|- ( ph -> ( A x. ( L ` .0. ) ) = ( A x. 0 ) ) |
| 31 |
20 27 30
|
3brtr4d |
|- ( ph -> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ x e. V ) -> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) |
| 33 |
15 16 32
|
pm2.61ne |
|- ( ( ph /\ x e. V ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
| 34 |
33
|
ralrimiva |
|- ( ph -> A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
| 35 |
1 2 3 4
|
nmolb |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ A e. RR /\ 0 <_ A ) -> ( A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) -> ( N ` F ) <_ A ) ) |
| 36 |
6 7 8 9 10 35
|
syl311anc |
|- ( ph -> ( A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) -> ( N ` F ) <_ A ) ) |
| 37 |
34 36
|
mpd |
|- ( ph -> ( N ` F ) <_ A ) |