| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoxr.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
nmoxr.2 |
|- Y = ( BaseSet ` W ) |
| 3 |
|
nmoxr.3 |
|- N = ( U normOpOLD W ) |
| 4 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
| 5 |
|
eqid |
|- ( normCV ` W ) = ( normCV ` W ) |
| 6 |
1 2 4 5 3
|
nmooval |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) = sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) ) |
| 7 |
2 5
|
nmosetre |
|- ( ( W e. NrmCVec /\ T : X --> Y ) -> { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR ) |
| 8 |
|
ressxr |
|- RR C_ RR* |
| 9 |
7 8
|
sstrdi |
|- ( ( W e. NrmCVec /\ T : X --> Y ) -> { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR* ) |
| 10 |
|
supxrcl |
|- ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } C_ RR* -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* ) |
| 11 |
9 10
|
syl |
|- ( ( W e. NrmCVec /\ T : X --> Y ) -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* ) |
| 12 |
11
|
3adant1 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> sup ( { x | E. z e. X ( ( ( normCV ` U ) ` z ) <_ 1 /\ x = ( ( normCV ` W ) ` ( T ` z ) ) ) } , RR* , < ) e. RR* ) |
| 13 |
6 12
|
eqeltrd |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) e. RR* ) |