Metamath Proof Explorer


Theorem nmoxr

Description: The norm of an operator is an extended real. (Contributed by NM, 27-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoxr.1 X = BaseSet U
nmoxr.2 Y = BaseSet W
nmoxr.3 N = U normOp OLD W
Assertion nmoxr U NrmCVec W NrmCVec T : X Y N T *

Proof

Step Hyp Ref Expression
1 nmoxr.1 X = BaseSet U
2 nmoxr.2 Y = BaseSet W
3 nmoxr.3 N = U normOp OLD W
4 eqid norm CV U = norm CV U
5 eqid norm CV W = norm CV W
6 1 2 4 5 3 nmooval U NrmCVec W NrmCVec T : X Y N T = sup x | z X norm CV U z 1 x = norm CV W T z * <
7 2 5 nmosetre W NrmCVec T : X Y x | z X norm CV U z 1 x = norm CV W T z
8 ressxr *
9 7 8 sstrdi W NrmCVec T : X Y x | z X norm CV U z 1 x = norm CV W T z *
10 supxrcl x | z X norm CV U z 1 x = norm CV W T z * sup x | z X norm CV U z 1 x = norm CV W T z * < *
11 9 10 syl W NrmCVec T : X Y sup x | z X norm CV U z 1 x = norm CV W T z * < *
12 11 3adant1 U NrmCVec W NrmCVec T : X Y sup x | z X norm CV U z 1 x = norm CV W T z * < *
13 6 12 eqeltrd U NrmCVec W NrmCVec T : X Y N T *