Metamath Proof Explorer


Theorem nmooval

Description: The operator norm function. (Contributed by NM, 27-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nmoofval.1 X=BaseSetU
nmoofval.2 Y=BaseSetW
nmoofval.3 L=normCVU
nmoofval.4 M=normCVW
nmoofval.6 N=UnormOpOLDW
Assertion nmooval UNrmCVecWNrmCVecT:XYNT=supx|zXLz1x=MTz*<

Proof

Step Hyp Ref Expression
1 nmoofval.1 X=BaseSetU
2 nmoofval.2 Y=BaseSetW
3 nmoofval.3 L=normCVU
4 nmoofval.4 M=normCVW
5 nmoofval.6 N=UnormOpOLDW
6 2 fvexi YV
7 1 fvexi XV
8 6 7 elmap TYXT:XY
9 1 2 3 4 5 nmoofval UNrmCVecWNrmCVecN=tYXsupx|zXLz1x=Mtz*<
10 9 fveq1d UNrmCVecWNrmCVecNT=tYXsupx|zXLz1x=Mtz*<T
11 fveq1 t=Ttz=Tz
12 11 fveq2d t=TMtz=MTz
13 12 eqeq2d t=Tx=Mtzx=MTz
14 13 anbi2d t=TLz1x=MtzLz1x=MTz
15 14 rexbidv t=TzXLz1x=MtzzXLz1x=MTz
16 15 abbidv t=Tx|zXLz1x=Mtz=x|zXLz1x=MTz
17 16 supeq1d t=Tsupx|zXLz1x=Mtz*<=supx|zXLz1x=MTz*<
18 eqid tYXsupx|zXLz1x=Mtz*<=tYXsupx|zXLz1x=Mtz*<
19 xrltso <Or*
20 19 supex supx|zXLz1x=MTz*<V
21 17 18 20 fvmpt TYXtYXsupx|zXLz1x=Mtz*<T=supx|zXLz1x=MTz*<
22 10 21 sylan9eq UNrmCVecWNrmCVecTYXNT=supx|zXLz1x=MTz*<
23 8 22 sylan2br UNrmCVecWNrmCVecT:XYNT=supx|zXLz1x=MTz*<
24 23 3impa UNrmCVecWNrmCVecT:XYNT=supx|zXLz1x=MTz*<