| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0le2msqi.1 |
|- A e. NN0 |
| 2 |
|
nn0le2msqi.2 |
|- B e. NN0 |
| 3 |
1
|
nn0ge0i |
|- 0 <_ A |
| 4 |
2
|
nn0ge0i |
|- 0 <_ B |
| 5 |
1
|
nn0rei |
|- A e. RR |
| 6 |
2
|
nn0rei |
|- B e. RR |
| 7 |
5 6
|
le2sqi |
|- ( ( 0 <_ A /\ 0 <_ B ) -> ( A <_ B <-> ( A ^ 2 ) <_ ( B ^ 2 ) ) ) |
| 8 |
3 4 7
|
mp2an |
|- ( A <_ B <-> ( A ^ 2 ) <_ ( B ^ 2 ) ) |
| 9 |
1
|
nn0cni |
|- A e. CC |
| 10 |
9
|
sqvali |
|- ( A ^ 2 ) = ( A x. A ) |
| 11 |
2
|
nn0cni |
|- B e. CC |
| 12 |
11
|
sqvali |
|- ( B ^ 2 ) = ( B x. B ) |
| 13 |
10 12
|
breq12i |
|- ( ( A ^ 2 ) <_ ( B ^ 2 ) <-> ( A x. A ) <_ ( B x. B ) ) |
| 14 |
8 13
|
bitri |
|- ( A <_ B <-> ( A x. A ) <_ ( B x. B ) ) |