| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0opthlem1.1 |
|- A e. NN0 |
| 2 |
|
nn0opthlem1.2 |
|- C e. NN0 |
| 3 |
|
1nn0 |
|- 1 e. NN0 |
| 4 |
1 3
|
nn0addcli |
|- ( A + 1 ) e. NN0 |
| 5 |
4 2
|
nn0le2msqi |
|- ( ( A + 1 ) <_ C <-> ( ( A + 1 ) x. ( A + 1 ) ) <_ ( C x. C ) ) |
| 6 |
|
nn0ltp1le |
|- ( ( A e. NN0 /\ C e. NN0 ) -> ( A < C <-> ( A + 1 ) <_ C ) ) |
| 7 |
1 2 6
|
mp2an |
|- ( A < C <-> ( A + 1 ) <_ C ) |
| 8 |
1 1
|
nn0mulcli |
|- ( A x. A ) e. NN0 |
| 9 |
|
2nn0 |
|- 2 e. NN0 |
| 10 |
9 1
|
nn0mulcli |
|- ( 2 x. A ) e. NN0 |
| 11 |
8 10
|
nn0addcli |
|- ( ( A x. A ) + ( 2 x. A ) ) e. NN0 |
| 12 |
2 2
|
nn0mulcli |
|- ( C x. C ) e. NN0 |
| 13 |
|
nn0ltp1le |
|- ( ( ( ( A x. A ) + ( 2 x. A ) ) e. NN0 /\ ( C x. C ) e. NN0 ) -> ( ( ( A x. A ) + ( 2 x. A ) ) < ( C x. C ) <-> ( ( ( A x. A ) + ( 2 x. A ) ) + 1 ) <_ ( C x. C ) ) ) |
| 14 |
11 12 13
|
mp2an |
|- ( ( ( A x. A ) + ( 2 x. A ) ) < ( C x. C ) <-> ( ( ( A x. A ) + ( 2 x. A ) ) + 1 ) <_ ( C x. C ) ) |
| 15 |
1
|
nn0cni |
|- A e. CC |
| 16 |
|
ax-1cn |
|- 1 e. CC |
| 17 |
15 16
|
binom2i |
|- ( ( A + 1 ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. 1 ) ) ) + ( 1 ^ 2 ) ) |
| 18 |
15 16
|
addcli |
|- ( A + 1 ) e. CC |
| 19 |
18
|
sqvali |
|- ( ( A + 1 ) ^ 2 ) = ( ( A + 1 ) x. ( A + 1 ) ) |
| 20 |
15
|
sqvali |
|- ( A ^ 2 ) = ( A x. A ) |
| 21 |
20
|
oveq1i |
|- ( ( A ^ 2 ) + ( 2 x. ( A x. 1 ) ) ) = ( ( A x. A ) + ( 2 x. ( A x. 1 ) ) ) |
| 22 |
16
|
sqvali |
|- ( 1 ^ 2 ) = ( 1 x. 1 ) |
| 23 |
21 22
|
oveq12i |
|- ( ( ( A ^ 2 ) + ( 2 x. ( A x. 1 ) ) ) + ( 1 ^ 2 ) ) = ( ( ( A x. A ) + ( 2 x. ( A x. 1 ) ) ) + ( 1 x. 1 ) ) |
| 24 |
17 19 23
|
3eqtr3i |
|- ( ( A + 1 ) x. ( A + 1 ) ) = ( ( ( A x. A ) + ( 2 x. ( A x. 1 ) ) ) + ( 1 x. 1 ) ) |
| 25 |
15
|
mulridi |
|- ( A x. 1 ) = A |
| 26 |
25
|
oveq2i |
|- ( 2 x. ( A x. 1 ) ) = ( 2 x. A ) |
| 27 |
26
|
oveq2i |
|- ( ( A x. A ) + ( 2 x. ( A x. 1 ) ) ) = ( ( A x. A ) + ( 2 x. A ) ) |
| 28 |
16
|
mulridi |
|- ( 1 x. 1 ) = 1 |
| 29 |
27 28
|
oveq12i |
|- ( ( ( A x. A ) + ( 2 x. ( A x. 1 ) ) ) + ( 1 x. 1 ) ) = ( ( ( A x. A ) + ( 2 x. A ) ) + 1 ) |
| 30 |
24 29
|
eqtri |
|- ( ( A + 1 ) x. ( A + 1 ) ) = ( ( ( A x. A ) + ( 2 x. A ) ) + 1 ) |
| 31 |
30
|
breq1i |
|- ( ( ( A + 1 ) x. ( A + 1 ) ) <_ ( C x. C ) <-> ( ( ( A x. A ) + ( 2 x. A ) ) + 1 ) <_ ( C x. C ) ) |
| 32 |
14 31
|
bitr4i |
|- ( ( ( A x. A ) + ( 2 x. A ) ) < ( C x. C ) <-> ( ( A + 1 ) x. ( A + 1 ) ) <_ ( C x. C ) ) |
| 33 |
5 7 32
|
3bitr4i |
|- ( A < C <-> ( ( A x. A ) + ( 2 x. A ) ) < ( C x. C ) ) |