| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0opth.1 |  |-  A e. NN0 | 
						
							| 2 |  | nn0opth.2 |  |-  B e. NN0 | 
						
							| 3 |  | nn0opth.3 |  |-  C e. NN0 | 
						
							| 4 |  | nn0opth.4 |  |-  D e. NN0 | 
						
							| 5 | 1 2 | nn0addcli |  |-  ( A + B ) e. NN0 | 
						
							| 6 | 5 3 | nn0opthlem1 |  |-  ( ( A + B ) < C <-> ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) < ( C x. C ) ) | 
						
							| 7 | 2 | nn0rei |  |-  B e. RR | 
						
							| 8 | 7 1 | nn0addge2i |  |-  B <_ ( A + B ) | 
						
							| 9 | 5 2 | nn0lele2xi |  |-  ( B <_ ( A + B ) -> B <_ ( 2 x. ( A + B ) ) ) | 
						
							| 10 |  | 2re |  |-  2 e. RR | 
						
							| 11 | 5 | nn0rei |  |-  ( A + B ) e. RR | 
						
							| 12 | 10 11 | remulcli |  |-  ( 2 x. ( A + B ) ) e. RR | 
						
							| 13 | 11 11 | remulcli |  |-  ( ( A + B ) x. ( A + B ) ) e. RR | 
						
							| 14 | 7 12 13 | leadd2i |  |-  ( B <_ ( 2 x. ( A + B ) ) <-> ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) ) | 
						
							| 15 | 9 14 | sylib |  |-  ( B <_ ( A + B ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) ) | 
						
							| 16 | 8 15 | ax-mp |  |-  ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) | 
						
							| 17 | 13 7 | readdcli |  |-  ( ( ( A + B ) x. ( A + B ) ) + B ) e. RR | 
						
							| 18 | 13 12 | readdcli |  |-  ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) e. RR | 
						
							| 19 | 3 | nn0rei |  |-  C e. RR | 
						
							| 20 | 19 19 | remulcli |  |-  ( C x. C ) e. RR | 
						
							| 21 | 17 18 20 | lelttri |  |-  ( ( ( ( ( A + B ) x. ( A + B ) ) + B ) <_ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) /\ ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) < ( C x. C ) ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) ) | 
						
							| 22 | 16 21 | mpan |  |-  ( ( ( ( A + B ) x. ( A + B ) ) + ( 2 x. ( A + B ) ) ) < ( C x. C ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) ) | 
						
							| 23 | 6 22 | sylbi |  |-  ( ( A + B ) < C -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) ) | 
						
							| 24 | 20 4 | nn0addge1i |  |-  ( C x. C ) <_ ( ( C x. C ) + D ) | 
						
							| 25 | 4 | nn0rei |  |-  D e. RR | 
						
							| 26 | 20 25 | readdcli |  |-  ( ( C x. C ) + D ) e. RR | 
						
							| 27 | 17 20 26 | ltletri |  |-  ( ( ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) /\ ( C x. C ) <_ ( ( C x. C ) + D ) ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( ( C x. C ) + D ) ) | 
						
							| 28 | 24 27 | mpan2 |  |-  ( ( ( ( A + B ) x. ( A + B ) ) + B ) < ( C x. C ) -> ( ( ( A + B ) x. ( A + B ) ) + B ) < ( ( C x. C ) + D ) ) | 
						
							| 29 | 17 26 | ltnei |  |-  ( ( ( ( A + B ) x. ( A + B ) ) + B ) < ( ( C x. C ) + D ) -> ( ( C x. C ) + D ) =/= ( ( ( A + B ) x. ( A + B ) ) + B ) ) | 
						
							| 30 | 23 28 29 | 3syl |  |-  ( ( A + B ) < C -> ( ( C x. C ) + D ) =/= ( ( ( A + B ) x. ( A + B ) ) + B ) ) |