Metamath Proof Explorer


Theorem nn0le2x

Description: A nonnegative integer is less than or equal to twice itself. Generalization of nn0le2xi . (Contributed by Raph Levien, 10-Dec-2002) (Revised by AV, 9-Sep-2025)

Ref Expression
Assertion nn0le2x
|- ( N e. NN0 -> N <_ ( 2 x. N ) )

Proof

Step Hyp Ref Expression
1 nn0re
 |-  ( N e. NN0 -> N e. RR )
2 nn0addge1
 |-  ( ( N e. RR /\ N e. NN0 ) -> N <_ ( N + N ) )
3 1 2 mpancom
 |-  ( N e. NN0 -> N <_ ( N + N ) )
4 nn0cn
 |-  ( N e. NN0 -> N e. CC )
5 4 2timesd
 |-  ( N e. NN0 -> ( 2 x. N ) = ( N + N ) )
6 3 5 breqtrrd
 |-  ( N e. NN0 -> N <_ ( 2 x. N ) )