Metamath Proof Explorer


Theorem nn0le2x

Description: A nonnegative integer is less than or equal to twice itself. Generalization of nn0le2xi . (Contributed by Raph Levien, 10-Dec-2002) (Revised by AV, 9-Sep-2025)

Ref Expression
Assertion nn0le2x N 0 N 2 N

Proof

Step Hyp Ref Expression
1 nn0re N 0 N
2 nn0addge1 N N 0 N N + N
3 1 2 mpancom N 0 N N + N
4 nn0cn N 0 N
5 4 2timesd N 0 2 N = N + N
6 3 5 breqtrrd N 0 N 2 N