Metamath Proof Explorer


Theorem nn0le2x

Description: A nonnegative integer is less than or equal to twice itself. Generalization of nn0le2xi . (Contributed by Raph Levien, 10-Dec-2002) (Revised by AV, 9-Sep-2025)

Ref Expression
Assertion nn0le2x ( 𝑁 ∈ ℕ0𝑁 ≤ ( 2 · 𝑁 ) )

Proof

Step Hyp Ref Expression
1 nn0re ( 𝑁 ∈ ℕ0𝑁 ∈ ℝ )
2 nn0addge1 ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( 𝑁 + 𝑁 ) )
3 1 2 mpancom ( 𝑁 ∈ ℕ0𝑁 ≤ ( 𝑁 + 𝑁 ) )
4 nn0cn ( 𝑁 ∈ ℕ0𝑁 ∈ ℂ )
5 4 2timesd ( 𝑁 ∈ ℕ0 → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) )
6 3 5 breqtrrd ( 𝑁 ∈ ℕ0𝑁 ≤ ( 2 · 𝑁 ) )