Metamath Proof Explorer


Theorem nn0sinds

Description: Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Hypotheses nn0sinds.1
|- ( x = y -> ( ph <-> ps ) )
nn0sinds.2
|- ( x = N -> ( ph <-> ch ) )
nn0sinds.3
|- ( x e. NN0 -> ( A. y e. ( 0 ... ( x - 1 ) ) ps -> ph ) )
Assertion nn0sinds
|- ( N e. NN0 -> ch )

Proof

Step Hyp Ref Expression
1 nn0sinds.1
 |-  ( x = y -> ( ph <-> ps ) )
2 nn0sinds.2
 |-  ( x = N -> ( ph <-> ch ) )
3 nn0sinds.3
 |-  ( x e. NN0 -> ( A. y e. ( 0 ... ( x - 1 ) ) ps -> ph ) )
4 elnn0uz
 |-  ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) )
5 elnn0uz
 |-  ( x e. NN0 <-> x e. ( ZZ>= ` 0 ) )
6 5 3 sylbir
 |-  ( x e. ( ZZ>= ` 0 ) -> ( A. y e. ( 0 ... ( x - 1 ) ) ps -> ph ) )
7 1 2 6 uzsinds
 |-  ( N e. ( ZZ>= ` 0 ) -> ch )
8 4 7 sylbi
 |-  ( N e. NN0 -> ch )