| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzsinds.1 |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 2 |  | uzsinds.2 |  |-  ( x = N -> ( ph <-> ch ) ) | 
						
							| 3 |  | uzsinds.3 |  |-  ( x e. ( ZZ>= ` M ) -> ( A. y e. ( M ... ( x - 1 ) ) ps -> ph ) ) | 
						
							| 4 |  | ltweuz |  |-  < We ( ZZ>= ` M ) | 
						
							| 5 |  | fvex |  |-  ( ZZ>= ` M ) e. _V | 
						
							| 6 |  | exse |  |-  ( ( ZZ>= ` M ) e. _V -> < Se ( ZZ>= ` M ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  < Se ( ZZ>= ` M ) | 
						
							| 8 |  | preduz |  |-  ( x e. ( ZZ>= ` M ) -> Pred ( < , ( ZZ>= ` M ) , x ) = ( M ... ( x - 1 ) ) ) | 
						
							| 9 | 8 | raleqdv |  |-  ( x e. ( ZZ>= ` M ) -> ( A. y e. Pred ( < , ( ZZ>= ` M ) , x ) ps <-> A. y e. ( M ... ( x - 1 ) ) ps ) ) | 
						
							| 10 | 9 3 | sylbid |  |-  ( x e. ( ZZ>= ` M ) -> ( A. y e. Pred ( < , ( ZZ>= ` M ) , x ) ps -> ph ) ) | 
						
							| 11 | 4 7 1 2 10 | wfis3 |  |-  ( N e. ( ZZ>= ` M ) -> ch ) |