Description: Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nnsinds.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
nnsinds.2 | |- ( x = N -> ( ph <-> ch ) ) |
||
nnsinds.3 | |- ( x e. NN -> ( A. y e. ( 1 ... ( x - 1 ) ) ps -> ph ) ) |
||
Assertion | nnsinds | |- ( N e. NN -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsinds.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
2 | nnsinds.2 | |- ( x = N -> ( ph <-> ch ) ) |
|
3 | nnsinds.3 | |- ( x e. NN -> ( A. y e. ( 1 ... ( x - 1 ) ) ps -> ph ) ) |
|
4 | elnnuz | |- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
|
5 | elnnuz | |- ( x e. NN <-> x e. ( ZZ>= ` 1 ) ) |
|
6 | 5 3 | sylbir | |- ( x e. ( ZZ>= ` 1 ) -> ( A. y e. ( 1 ... ( x - 1 ) ) ps -> ph ) ) |
7 | 1 2 6 | uzsinds | |- ( N e. ( ZZ>= ` 1 ) -> ch ) |
8 | 4 7 | sylbi | |- ( N e. NN -> ch ) |