Metamath Proof Explorer


Theorem nnsinds

Description: Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Hypotheses nnsinds.1
|- ( x = y -> ( ph <-> ps ) )
nnsinds.2
|- ( x = N -> ( ph <-> ch ) )
nnsinds.3
|- ( x e. NN -> ( A. y e. ( 1 ... ( x - 1 ) ) ps -> ph ) )
Assertion nnsinds
|- ( N e. NN -> ch )

Proof

Step Hyp Ref Expression
1 nnsinds.1
 |-  ( x = y -> ( ph <-> ps ) )
2 nnsinds.2
 |-  ( x = N -> ( ph <-> ch ) )
3 nnsinds.3
 |-  ( x e. NN -> ( A. y e. ( 1 ... ( x - 1 ) ) ps -> ph ) )
4 elnnuz
 |-  ( N e. NN <-> N e. ( ZZ>= ` 1 ) )
5 elnnuz
 |-  ( x e. NN <-> x e. ( ZZ>= ` 1 ) )
6 5 3 sylbir
 |-  ( x e. ( ZZ>= ` 1 ) -> ( A. y e. ( 1 ... ( x - 1 ) ) ps -> ph ) )
7 1 2 6 uzsinds
 |-  ( N e. ( ZZ>= ` 1 ) -> ch )
8 4 7 sylbi
 |-  ( N e. NN -> ch )