Description: Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nnsinds.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| nnsinds.2 | ⊢ ( 𝑥 = 𝑁 → ( 𝜑 ↔ 𝜒 ) ) | ||
| nnsinds.3 | ⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜓 → 𝜑 ) ) | ||
| Assertion | nnsinds | ⊢ ( 𝑁 ∈ ℕ → 𝜒 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnsinds.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | nnsinds.2 | ⊢ ( 𝑥 = 𝑁 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | nnsinds.3 | ⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜓 → 𝜑 ) ) | |
| 4 | elnnuz | ⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 5 | elnnuz | ⊢ ( 𝑥 ∈ ℕ ↔ 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 6 | 5 3 | sylbir | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑥 − 1 ) ) 𝜓 → 𝜑 ) ) | 
| 7 | 1 2 6 | uzsinds | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 𝜒 ) | 
| 8 | 4 7 | sylbi | ⊢ ( 𝑁 ∈ ℕ → 𝜒 ) |