Metamath Proof Explorer


Theorem nnsinds

Description: Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Hypotheses nnsinds.1 x=yφψ
nnsinds.2 x=Nφχ
nnsinds.3 xy1x1ψφ
Assertion nnsinds Nχ

Proof

Step Hyp Ref Expression
1 nnsinds.1 x=yφψ
2 nnsinds.2 x=Nφχ
3 nnsinds.3 xy1x1ψφ
4 elnnuz NN1
5 elnnuz xx1
6 5 3 sylbir x1y1x1ψφ
7 1 2 6 uzsinds N1χ
8 4 7 sylbi Nχ