| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzsinds.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | uzsinds.2 | ⊢ ( 𝑥  =  𝑁  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | uzsinds.3 | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ∀ 𝑦  ∈  ( 𝑀 ... ( 𝑥  −  1 ) ) 𝜓  →  𝜑 ) ) | 
						
							| 4 |  | ltweuz | ⊢  <   We  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | fvex | ⊢ ( ℤ≥ ‘ 𝑀 )  ∈  V | 
						
							| 6 |  | exse | ⊢ ( ( ℤ≥ ‘ 𝑀 )  ∈  V  →   <   Se  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢  <   Se  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 8 |  | preduz | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 𝑀 )  →  Pred (  <  ,  ( ℤ≥ ‘ 𝑀 ) ,  𝑥 )  =  ( 𝑀 ... ( 𝑥  −  1 ) ) ) | 
						
							| 9 | 8 | raleqdv | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ∀ 𝑦  ∈  Pred (  <  ,  ( ℤ≥ ‘ 𝑀 ) ,  𝑥 ) 𝜓  ↔  ∀ 𝑦  ∈  ( 𝑀 ... ( 𝑥  −  1 ) ) 𝜓 ) ) | 
						
							| 10 | 9 3 | sylbid | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ∀ 𝑦  ∈  Pred (  <  ,  ( ℤ≥ ‘ 𝑀 ) ,  𝑥 ) 𝜓  →  𝜑 ) ) | 
						
							| 11 | 4 7 1 2 10 | wfis3 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝜒 ) |