Description: Version of addcomli for natural numbers. (Contributed by Steven Nguyen, 1-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nnaddcomli.1 | |- A e. NN |
|
| nnaddcomli.2 | |- B e. NN |
||
| nnaddcomli.3 | |- ( A + B ) = C |
||
| Assertion | nnaddcomli | |- ( B + A ) = C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaddcomli.1 | |- A e. NN |
|
| 2 | nnaddcomli.2 | |- B e. NN |
|
| 3 | nnaddcomli.3 | |- ( A + B ) = C |
|
| 4 | nnaddcom | |- ( ( B e. NN /\ A e. NN ) -> ( B + A ) = ( A + B ) ) |
|
| 5 | 2 1 4 | mp2an | |- ( B + A ) = ( A + B ) |
| 6 | 5 3 | eqtri | |- ( B + A ) = C |