| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( x = 1 -> ( x + B ) = ( 1 + B ) ) |
| 2 |
|
oveq2 |
|- ( x = 1 -> ( B + x ) = ( B + 1 ) ) |
| 3 |
1 2
|
eqeq12d |
|- ( x = 1 -> ( ( x + B ) = ( B + x ) <-> ( 1 + B ) = ( B + 1 ) ) ) |
| 4 |
3
|
imbi2d |
|- ( x = 1 -> ( ( B e. NN -> ( x + B ) = ( B + x ) ) <-> ( B e. NN -> ( 1 + B ) = ( B + 1 ) ) ) ) |
| 5 |
|
oveq1 |
|- ( x = y -> ( x + B ) = ( y + B ) ) |
| 6 |
|
oveq2 |
|- ( x = y -> ( B + x ) = ( B + y ) ) |
| 7 |
5 6
|
eqeq12d |
|- ( x = y -> ( ( x + B ) = ( B + x ) <-> ( y + B ) = ( B + y ) ) ) |
| 8 |
7
|
imbi2d |
|- ( x = y -> ( ( B e. NN -> ( x + B ) = ( B + x ) ) <-> ( B e. NN -> ( y + B ) = ( B + y ) ) ) ) |
| 9 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x + B ) = ( ( y + 1 ) + B ) ) |
| 10 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( B + x ) = ( B + ( y + 1 ) ) ) |
| 11 |
9 10
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( x + B ) = ( B + x ) <-> ( ( y + 1 ) + B ) = ( B + ( y + 1 ) ) ) ) |
| 12 |
11
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( B e. NN -> ( x + B ) = ( B + x ) ) <-> ( B e. NN -> ( ( y + 1 ) + B ) = ( B + ( y + 1 ) ) ) ) ) |
| 13 |
|
oveq1 |
|- ( x = A -> ( x + B ) = ( A + B ) ) |
| 14 |
|
oveq2 |
|- ( x = A -> ( B + x ) = ( B + A ) ) |
| 15 |
13 14
|
eqeq12d |
|- ( x = A -> ( ( x + B ) = ( B + x ) <-> ( A + B ) = ( B + A ) ) ) |
| 16 |
15
|
imbi2d |
|- ( x = A -> ( ( B e. NN -> ( x + B ) = ( B + x ) ) <-> ( B e. NN -> ( A + B ) = ( B + A ) ) ) ) |
| 17 |
|
nnadd1com |
|- ( B e. NN -> ( B + 1 ) = ( 1 + B ) ) |
| 18 |
17
|
eqcomd |
|- ( B e. NN -> ( 1 + B ) = ( B + 1 ) ) |
| 19 |
|
oveq1 |
|- ( ( y + B ) = ( B + y ) -> ( ( y + B ) + 1 ) = ( ( B + y ) + 1 ) ) |
| 20 |
17
|
oveq2d |
|- ( B e. NN -> ( y + ( B + 1 ) ) = ( y + ( 1 + B ) ) ) |
| 21 |
20
|
adantl |
|- ( ( y e. NN /\ B e. NN ) -> ( y + ( B + 1 ) ) = ( y + ( 1 + B ) ) ) |
| 22 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
| 23 |
22
|
adantr |
|- ( ( y e. NN /\ B e. NN ) -> y e. CC ) |
| 24 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
| 25 |
24
|
adantl |
|- ( ( y e. NN /\ B e. NN ) -> B e. CC ) |
| 26 |
|
1cnd |
|- ( ( y e. NN /\ B e. NN ) -> 1 e. CC ) |
| 27 |
23 25 26
|
addassd |
|- ( ( y e. NN /\ B e. NN ) -> ( ( y + B ) + 1 ) = ( y + ( B + 1 ) ) ) |
| 28 |
23 26 25
|
addassd |
|- ( ( y e. NN /\ B e. NN ) -> ( ( y + 1 ) + B ) = ( y + ( 1 + B ) ) ) |
| 29 |
21 27 28
|
3eqtr4d |
|- ( ( y e. NN /\ B e. NN ) -> ( ( y + B ) + 1 ) = ( ( y + 1 ) + B ) ) |
| 30 |
25 23 26
|
addassd |
|- ( ( y e. NN /\ B e. NN ) -> ( ( B + y ) + 1 ) = ( B + ( y + 1 ) ) ) |
| 31 |
29 30
|
eqeq12d |
|- ( ( y e. NN /\ B e. NN ) -> ( ( ( y + B ) + 1 ) = ( ( B + y ) + 1 ) <-> ( ( y + 1 ) + B ) = ( B + ( y + 1 ) ) ) ) |
| 32 |
19 31
|
imbitrid |
|- ( ( y e. NN /\ B e. NN ) -> ( ( y + B ) = ( B + y ) -> ( ( y + 1 ) + B ) = ( B + ( y + 1 ) ) ) ) |
| 33 |
32
|
ex |
|- ( y e. NN -> ( B e. NN -> ( ( y + B ) = ( B + y ) -> ( ( y + 1 ) + B ) = ( B + ( y + 1 ) ) ) ) ) |
| 34 |
33
|
a2d |
|- ( y e. NN -> ( ( B e. NN -> ( y + B ) = ( B + y ) ) -> ( B e. NN -> ( ( y + 1 ) + B ) = ( B + ( y + 1 ) ) ) ) ) |
| 35 |
4 8 12 16 18 34
|
nnind |
|- ( A e. NN -> ( B e. NN -> ( A + B ) = ( B + A ) ) ) |
| 36 |
35
|
imp |
|- ( ( A e. NN /\ B e. NN ) -> ( A + B ) = ( B + A ) ) |