Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 + 𝐵 ) = ( 1 + 𝐵 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝐵 + 𝑥 ) = ( 𝐵 + 1 ) ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 + 𝐵 ) = ( 𝐵 + 𝑥 ) ↔ ( 1 + 𝐵 ) = ( 𝐵 + 1 ) ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝐵 ∈ ℕ → ( 𝑥 + 𝐵 ) = ( 𝐵 + 𝑥 ) ) ↔ ( 𝐵 ∈ ℕ → ( 1 + 𝐵 ) = ( 𝐵 + 1 ) ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 𝐵 ) = ( 𝑦 + 𝐵 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 + 𝑥 ) = ( 𝐵 + 𝑦 ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 + 𝐵 ) = ( 𝐵 + 𝑥 ) ↔ ( 𝑦 + 𝐵 ) = ( 𝐵 + 𝑦 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∈ ℕ → ( 𝑥 + 𝐵 ) = ( 𝐵 + 𝑥 ) ) ↔ ( 𝐵 ∈ ℕ → ( 𝑦 + 𝐵 ) = ( 𝐵 + 𝑦 ) ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 + 𝐵 ) = ( ( 𝑦 + 1 ) + 𝐵 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐵 + 𝑥 ) = ( 𝐵 + ( 𝑦 + 1 ) ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 + 𝐵 ) = ( 𝐵 + 𝑥 ) ↔ ( ( 𝑦 + 1 ) + 𝐵 ) = ( 𝐵 + ( 𝑦 + 1 ) ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐵 ∈ ℕ → ( 𝑥 + 𝐵 ) = ( 𝐵 + 𝑥 ) ) ↔ ( 𝐵 ∈ ℕ → ( ( 𝑦 + 1 ) + 𝐵 ) = ( 𝐵 + ( 𝑦 + 1 ) ) ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 + 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 + 𝑥 ) = ( 𝐵 + 𝐴 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 + 𝐵 ) = ( 𝐵 + 𝑥 ) ↔ ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ ℕ → ( 𝑥 + 𝐵 ) = ( 𝐵 + 𝑥 ) ) ↔ ( 𝐵 ∈ ℕ → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) ) ) |
17 |
|
nnadd1com |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 + 1 ) = ( 1 + 𝐵 ) ) |
18 |
17
|
eqcomd |
⊢ ( 𝐵 ∈ ℕ → ( 1 + 𝐵 ) = ( 𝐵 + 1 ) ) |
19 |
|
oveq1 |
⊢ ( ( 𝑦 + 𝐵 ) = ( 𝐵 + 𝑦 ) → ( ( 𝑦 + 𝐵 ) + 1 ) = ( ( 𝐵 + 𝑦 ) + 1 ) ) |
20 |
17
|
oveq2d |
⊢ ( 𝐵 ∈ ℕ → ( 𝑦 + ( 𝐵 + 1 ) ) = ( 𝑦 + ( 1 + 𝐵 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝑦 + ( 𝐵 + 1 ) ) = ( 𝑦 + ( 1 + 𝐵 ) ) ) |
22 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
23 |
22
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝑦 ∈ ℂ ) |
24 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
25 |
24
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
26 |
|
1cnd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 1 ∈ ℂ ) |
27 |
23 25 26
|
addassd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑦 + 𝐵 ) + 1 ) = ( 𝑦 + ( 𝐵 + 1 ) ) ) |
28 |
23 26 25
|
addassd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑦 + 1 ) + 𝐵 ) = ( 𝑦 + ( 1 + 𝐵 ) ) ) |
29 |
21 27 28
|
3eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑦 + 𝐵 ) + 1 ) = ( ( 𝑦 + 1 ) + 𝐵 ) ) |
30 |
25 23 26
|
addassd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐵 + 𝑦 ) + 1 ) = ( 𝐵 + ( 𝑦 + 1 ) ) ) |
31 |
29 30
|
eqeq12d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ( 𝑦 + 𝐵 ) + 1 ) = ( ( 𝐵 + 𝑦 ) + 1 ) ↔ ( ( 𝑦 + 1 ) + 𝐵 ) = ( 𝐵 + ( 𝑦 + 1 ) ) ) ) |
32 |
19 31
|
syl5ib |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑦 + 𝐵 ) = ( 𝐵 + 𝑦 ) → ( ( 𝑦 + 1 ) + 𝐵 ) = ( 𝐵 + ( 𝑦 + 1 ) ) ) ) |
33 |
32
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( 𝐵 ∈ ℕ → ( ( 𝑦 + 𝐵 ) = ( 𝐵 + 𝑦 ) → ( ( 𝑦 + 1 ) + 𝐵 ) = ( 𝐵 + ( 𝑦 + 1 ) ) ) ) ) |
34 |
33
|
a2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐵 ∈ ℕ → ( 𝑦 + 𝐵 ) = ( 𝐵 + 𝑦 ) ) → ( 𝐵 ∈ ℕ → ( ( 𝑦 + 1 ) + 𝐵 ) = ( 𝐵 + ( 𝑦 + 1 ) ) ) ) ) |
35 |
4 8 12 16 18 34
|
nnind |
⊢ ( 𝐴 ∈ ℕ → ( 𝐵 ∈ ℕ → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) ) |
36 |
35
|
imp |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |