Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 + 1 ) = ( 1 + 1 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 1 + 𝑥 ) = ( 1 + 1 ) ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 + 1 ) = ( 1 + 𝑥 ) ↔ ( 1 + 1 ) = ( 1 + 1 ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 1 ) = ( 𝑦 + 1 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 1 + 𝑥 ) = ( 1 + 𝑦 ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 + 1 ) = ( 1 + 𝑥 ) ↔ ( 𝑦 + 1 ) = ( 1 + 𝑦 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 + 1 ) = ( ( 𝑦 + 1 ) + 1 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 1 + 𝑥 ) = ( 1 + ( 𝑦 + 1 ) ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 + 1 ) = ( 1 + 𝑥 ) ↔ ( ( 𝑦 + 1 ) + 1 ) = ( 1 + ( 𝑦 + 1 ) ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 + 1 ) = ( 𝐴 + 1 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 1 + 𝑥 ) = ( 1 + 𝐴 ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 + 1 ) = ( 1 + 𝑥 ) ↔ ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) ) |
13 |
|
eqid |
⊢ ( 1 + 1 ) = ( 1 + 1 ) |
14 |
|
oveq1 |
⊢ ( ( 𝑦 + 1 ) = ( 1 + 𝑦 ) → ( ( 𝑦 + 1 ) + 1 ) = ( ( 1 + 𝑦 ) + 1 ) ) |
15 |
|
1cnd |
⊢ ( 𝑦 ∈ ℕ → 1 ∈ ℂ ) |
16 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
17 |
15 16 15
|
addassd |
⊢ ( 𝑦 ∈ ℕ → ( ( 1 + 𝑦 ) + 1 ) = ( 1 + ( 𝑦 + 1 ) ) ) |
18 |
14 17
|
sylan9eqr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) = ( 1 + 𝑦 ) ) → ( ( 𝑦 + 1 ) + 1 ) = ( 1 + ( 𝑦 + 1 ) ) ) |
19 |
18
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 + 1 ) = ( 1 + 𝑦 ) → ( ( 𝑦 + 1 ) + 1 ) = ( 1 + ( 𝑦 + 1 ) ) ) ) |
20 |
3 6 9 12 13 19
|
nnind |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |