Metamath Proof Explorer


Theorem nnadd1com

Description: Addition with 1 is commutative for natural numbers. (Contributed by Steven Nguyen, 9-Dec-2022)

Ref Expression
Assertion nnadd1com AA+1=1+A

Proof

Step Hyp Ref Expression
1 oveq1 x=1x+1=1+1
2 oveq2 x=11+x=1+1
3 1 2 eqeq12d x=1x+1=1+x1+1=1+1
4 oveq1 x=yx+1=y+1
5 oveq2 x=y1+x=1+y
6 4 5 eqeq12d x=yx+1=1+xy+1=1+y
7 oveq1 x=y+1x+1=y+1+1
8 oveq2 x=y+11+x=1+y+1
9 7 8 eqeq12d x=y+1x+1=1+xy+1+1=1+y+1
10 oveq1 x=Ax+1=A+1
11 oveq2 x=A1+x=1+A
12 10 11 eqeq12d x=Ax+1=1+xA+1=1+A
13 eqid 1+1=1+1
14 oveq1 y+1=1+yy+1+1=1+y+1
15 1cnd y1
16 nncn yy
17 15 16 15 addassd y1+y+1=1+y+1
18 14 17 sylan9eqr yy+1=1+yy+1+1=1+y+1
19 18 ex yy+1=1+yy+1+1=1+y+1
20 3 6 9 12 13 19 nnind AA+1=1+A