Metamath Proof Explorer


Theorem nnadd1com

Description: Addition with 1 is commutative for natural numbers. (Contributed by Steven Nguyen, 9-Dec-2022)

Ref Expression
Assertion nnadd1com A A + 1 = 1 + A

Proof

Step Hyp Ref Expression
1 oveq1 x = 1 x + 1 = 1 + 1
2 oveq2 x = 1 1 + x = 1 + 1
3 1 2 eqeq12d x = 1 x + 1 = 1 + x 1 + 1 = 1 + 1
4 oveq1 x = y x + 1 = y + 1
5 oveq2 x = y 1 + x = 1 + y
6 4 5 eqeq12d x = y x + 1 = 1 + x y + 1 = 1 + y
7 oveq1 x = y + 1 x + 1 = y + 1 + 1
8 oveq2 x = y + 1 1 + x = 1 + y + 1
9 7 8 eqeq12d x = y + 1 x + 1 = 1 + x y + 1 + 1 = 1 + y + 1
10 oveq1 x = A x + 1 = A + 1
11 oveq2 x = A 1 + x = 1 + A
12 10 11 eqeq12d x = A x + 1 = 1 + x A + 1 = 1 + A
13 eqid 1 + 1 = 1 + 1
14 oveq1 y + 1 = 1 + y y + 1 + 1 = 1 + y + 1
15 1cnd y 1
16 nncn y y
17 15 16 15 addassd y 1 + y + 1 = 1 + y + 1
18 14 17 sylan9eqr y y + 1 = 1 + y y + 1 + 1 = 1 + y + 1
19 18 ex y y + 1 = 1 + y y + 1 + 1 = 1 + y + 1
20 3 6 9 12 13 19 nnind A A + 1 = 1 + A