Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
eqeq12d |
|
4 |
3
|
imbi2d |
|
5 |
|
oveq1 |
|
6 |
|
oveq2 |
|
7 |
5 6
|
eqeq12d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq1 |
|
10 |
|
oveq2 |
|
11 |
9 10
|
eqeq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq1 |
|
14 |
|
oveq2 |
|
15 |
13 14
|
eqeq12d |
|
16 |
15
|
imbi2d |
|
17 |
|
nnadd1com |
|
18 |
17
|
eqcomd |
|
19 |
|
oveq1 |
|
20 |
17
|
oveq2d |
|
21 |
20
|
adantl |
|
22 |
|
nncn |
|
23 |
22
|
adantr |
|
24 |
|
nncn |
|
25 |
24
|
adantl |
|
26 |
|
1cnd |
|
27 |
23 25 26
|
addassd |
|
28 |
23 26 25
|
addassd |
|
29 |
21 27 28
|
3eqtr4d |
|
30 |
25 23 26
|
addassd |
|
31 |
29 30
|
eqeq12d |
|
32 |
19 31
|
syl5ib |
|
33 |
32
|
ex |
|
34 |
33
|
a2d |
|
35 |
4 8 12 16 18 34
|
nnind |
|
36 |
35
|
imp |
|