Metamath Proof Explorer


Theorem nnaddcomli

Description: Version of addcomli for natural numbers. (Contributed by Steven Nguyen, 1-Aug-2023)

Ref Expression
Hypotheses nnaddcomli.1 A
nnaddcomli.2 B
nnaddcomli.3 A + B = C
Assertion nnaddcomli B + A = C

Proof

Step Hyp Ref Expression
1 nnaddcomli.1 A
2 nnaddcomli.2 B
3 nnaddcomli.3 A + B = C
4 nnaddcom B A B + A = A + B
5 2 1 4 mp2an B + A = A + B
6 5 3 eqtri B + A = C