Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( K e. NN -> K e. ZZ ) |
2 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
3 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
4 |
1 2 3
|
3anim123i |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) |
5 |
|
nnne0 |
|- ( M e. NN -> M =/= 0 ) |
6 |
5
|
neneqd |
|- ( M e. NN -> -. M = 0 ) |
7 |
6
|
3ad2ant2 |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> -. M = 0 ) |
8 |
7
|
intnanrd |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> -. ( M = 0 /\ N = 0 ) ) |
9 |
|
dvdslegcd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) |
10 |
4 8 9
|
syl2anc |
|- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( ( K || M /\ K || N ) -> K <_ ( M gcd N ) ) ) |