Metamath Proof Explorer


Theorem nndvdslegcd

Description: A positive integer which divides both positive operands of the gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020)

Ref Expression
Assertion nndvdslegcd KMNKMKNKMgcdN

Proof

Step Hyp Ref Expression
1 nnz KK
2 nnz MM
3 nnz NN
4 1 2 3 3anim123i KMNKMN
5 nnne0 MM0
6 5 neneqd M¬M=0
7 6 3ad2ant2 KMN¬M=0
8 7 intnanrd KMN¬M=0N=0
9 dvdslegcd KMN¬M=0N=0KMKNKMgcdN
10 4 8 9 syl2anc KMNKMKNKMgcdN