Metamath Proof Explorer


Theorem nnlesq

Description: A positive integer is less than or equal to its square. (Contributed by NM, 15-Sep-1999) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion nnlesq
|- ( N e. NN -> N <_ ( N ^ 2 ) )

Proof

Step Hyp Ref Expression
1 nncn
 |-  ( N e. NN -> N e. CC )
2 1 mulid1d
 |-  ( N e. NN -> ( N x. 1 ) = N )
3 nnge1
 |-  ( N e. NN -> 1 <_ N )
4 1red
 |-  ( N e. NN -> 1 e. RR )
5 nnre
 |-  ( N e. NN -> N e. RR )
6 nngt0
 |-  ( N e. NN -> 0 < N )
7 lemul2
 |-  ( ( 1 e. RR /\ N e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( 1 <_ N <-> ( N x. 1 ) <_ ( N x. N ) ) )
8 4 5 5 6 7 syl112anc
 |-  ( N e. NN -> ( 1 <_ N <-> ( N x. 1 ) <_ ( N x. N ) ) )
9 3 8 mpbid
 |-  ( N e. NN -> ( N x. 1 ) <_ ( N x. N ) )
10 2 9 eqbrtrrd
 |-  ( N e. NN -> N <_ ( N x. N ) )
11 sqval
 |-  ( N e. CC -> ( N ^ 2 ) = ( N x. N ) )
12 1 11 syl
 |-  ( N e. NN -> ( N ^ 2 ) = ( N x. N ) )
13 10 12 breqtrrd
 |-  ( N e. NN -> N <_ ( N ^ 2 ) )