| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 2 |
1
|
mulridd |
|- ( N e. NN -> ( N x. 1 ) = N ) |
| 3 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
| 4 |
|
1red |
|- ( N e. NN -> 1 e. RR ) |
| 5 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 6 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 7 |
|
lemul2 |
|- ( ( 1 e. RR /\ N e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( 1 <_ N <-> ( N x. 1 ) <_ ( N x. N ) ) ) |
| 8 |
4 5 5 6 7
|
syl112anc |
|- ( N e. NN -> ( 1 <_ N <-> ( N x. 1 ) <_ ( N x. N ) ) ) |
| 9 |
3 8
|
mpbid |
|- ( N e. NN -> ( N x. 1 ) <_ ( N x. N ) ) |
| 10 |
2 9
|
eqbrtrrd |
|- ( N e. NN -> N <_ ( N x. N ) ) |
| 11 |
|
sqval |
|- ( N e. CC -> ( N ^ 2 ) = ( N x. N ) ) |
| 12 |
1 11
|
syl |
|- ( N e. NN -> ( N ^ 2 ) = ( N x. N ) ) |
| 13 |
10 12
|
breqtrrd |
|- ( N e. NN -> N <_ ( N ^ 2 ) ) |