Metamath Proof Explorer


Theorem nnsex

Description: The set of all positive surreal integers exists. (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Assertion nnsex
|- NN_s e. _V

Proof

Step Hyp Ref Expression
1 df-nns
 |-  NN_s = ( NN0_s \ { 0s } )
2 n0sex
 |-  NN0_s e. _V
3 2 difexi
 |-  ( NN0_s \ { 0s } ) e. _V
4 1 3 eqeltri
 |-  NN_s e. _V