Metamath Proof Explorer


Theorem peano5n0s

Description: Peano's inductive postulate for non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Assertion peano5n0s
|- ( ( 0s e. A /\ A. x e. A ( x +s 1s ) e. A ) -> NN0_s C_ A )

Proof

Step Hyp Ref Expression
1 df-n0s
 |-  NN0_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 0s ) " _om )
2 1 a1i
 |-  ( ( 0s e. A /\ A. x e. A ( x +s 1s ) e. A ) -> NN0_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 0s ) " _om ) )
3 0sno
 |-  0s e. No
4 3 a1i
 |-  ( ( 0s e. A /\ A. x e. A ( x +s 1s ) e. A ) -> 0s e. No )
5 simpl
 |-  ( ( 0s e. A /\ A. x e. A ( x +s 1s ) e. A ) -> 0s e. A )
6 oveq1
 |-  ( x = y -> ( x +s 1s ) = ( y +s 1s ) )
7 6 eleq1d
 |-  ( x = y -> ( ( x +s 1s ) e. A <-> ( y +s 1s ) e. A ) )
8 7 rspccva
 |-  ( ( A. x e. A ( x +s 1s ) e. A /\ y e. A ) -> ( y +s 1s ) e. A )
9 8 adantll
 |-  ( ( ( 0s e. A /\ A. x e. A ( x +s 1s ) e. A ) /\ y e. A ) -> ( y +s 1s ) e. A )
10 2 4 5 9 noseqind
 |-  ( ( 0s e. A /\ A. x e. A ( x +s 1s ) e. A ) -> NN0_s C_ A )