Step |
Hyp |
Ref |
Expression |
1 |
|
df-n0s |
|- NN0_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 0s ) " _om ) |
2 |
1
|
a1i |
|- ( ( 0s e. A /\ A. x e. A ( x +s 1s ) e. A ) -> NN0_s = ( rec ( ( n e. _V |-> ( n +s 1s ) ) , 0s ) " _om ) ) |
3 |
|
0sno |
|- 0s e. No |
4 |
3
|
a1i |
|- ( ( 0s e. A /\ A. x e. A ( x +s 1s ) e. A ) -> 0s e. No ) |
5 |
|
simpl |
|- ( ( 0s e. A /\ A. x e. A ( x +s 1s ) e. A ) -> 0s e. A ) |
6 |
|
oveq1 |
|- ( x = y -> ( x +s 1s ) = ( y +s 1s ) ) |
7 |
6
|
eleq1d |
|- ( x = y -> ( ( x +s 1s ) e. A <-> ( y +s 1s ) e. A ) ) |
8 |
7
|
rspccva |
|- ( ( A. x e. A ( x +s 1s ) e. A /\ y e. A ) -> ( y +s 1s ) e. A ) |
9 |
8
|
adantll |
|- ( ( ( 0s e. A /\ A. x e. A ( x +s 1s ) e. A ) /\ y e. A ) -> ( y +s 1s ) e. A ) |
10 |
2 4 5 9
|
noseqind |
|- ( ( 0s e. A /\ A. x e. A ( x +s 1s ) e. A ) -> NN0_s C_ A ) |