Metamath Proof Explorer


Theorem peano5n0s

Description: Peano's inductive postulate for non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Assertion peano5n0s 0 s A x A x + s 1 s A 0s A

Proof

Step Hyp Ref Expression
1 df-n0s 0s = rec n V n + s 1 s 0 s ω
2 1 a1i 0 s A x A x + s 1 s A 0s = rec n V n + s 1 s 0 s ω
3 0sno 0 s No
4 3 a1i 0 s A x A x + s 1 s A 0 s No
5 simpl 0 s A x A x + s 1 s A 0 s A
6 oveq1 x = y x + s 1 s = y + s 1 s
7 6 eleq1d x = y x + s 1 s A y + s 1 s A
8 7 rspccva x A x + s 1 s A y A y + s 1 s A
9 8 adantll 0 s A x A x + s 1 s A y A y + s 1 s A
10 2 4 5 9 noseqind 0 s A x A x + s 1 s A 0s A