| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normcl |
|- ( A e. ~H -> ( normh ` A ) e. RR ) |
| 2 |
1
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. RR ) |
| 3 |
|
normne0 |
|- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
| 4 |
3
|
biimpar |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) =/= 0 ) |
| 5 |
2 4
|
rereccld |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) |
| 6 |
5
|
recnd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) |
| 7 |
|
simpl |
|- ( ( A e. ~H /\ A =/= 0h ) -> A e. ~H ) |
| 8 |
|
norm-iii |
|- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` A ) ) ) |
| 9 |
6 7 8
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` A ) ) ) |
| 10 |
|
normgt0 |
|- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
| 11 |
10
|
biimpa |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( normh ` A ) ) |
| 12 |
|
1re |
|- 1 e. RR |
| 13 |
|
0le1 |
|- 0 <_ 1 |
| 14 |
|
divge0 |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
| 15 |
12 13 14
|
mpanl12 |
|- ( ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
| 16 |
2 11 15
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
| 17 |
5 16
|
absidd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) |
| 18 |
17
|
oveq1d |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` A ) ) ) |
| 19 |
1
|
recnd |
|- ( A e. ~H -> ( normh ` A ) e. CC ) |
| 20 |
19
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. CC ) |
| 21 |
20 4
|
recid2d |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) x. ( normh ` A ) ) = 1 ) |
| 22 |
9 18 21
|
3eqtrd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |