| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normlem1.1 |
|- S e. CC |
| 2 |
|
normlem1.2 |
|- F e. ~H |
| 3 |
|
normlem1.3 |
|- G e. ~H |
| 4 |
1 3
|
hvmulcli |
|- ( S .h G ) e. ~H |
| 5 |
2 4
|
hvsubvali |
|- ( F -h ( S .h G ) ) = ( F +h ( -u 1 .h ( S .h G ) ) ) |
| 6 |
1
|
mulm1i |
|- ( -u 1 x. S ) = -u S |
| 7 |
6
|
oveq1i |
|- ( ( -u 1 x. S ) .h G ) = ( -u S .h G ) |
| 8 |
|
neg1cn |
|- -u 1 e. CC |
| 9 |
8 1 3
|
hvmulassi |
|- ( ( -u 1 x. S ) .h G ) = ( -u 1 .h ( S .h G ) ) |
| 10 |
7 9
|
eqtr3i |
|- ( -u S .h G ) = ( -u 1 .h ( S .h G ) ) |
| 11 |
10
|
oveq2i |
|- ( F +h ( -u S .h G ) ) = ( F +h ( -u 1 .h ( S .h G ) ) ) |
| 12 |
5 11
|
eqtr4i |
|- ( F -h ( S .h G ) ) = ( F +h ( -u S .h G ) ) |
| 13 |
12 12
|
oveq12i |
|- ( ( F -h ( S .h G ) ) .ih ( F -h ( S .h G ) ) ) = ( ( F +h ( -u S .h G ) ) .ih ( F +h ( -u S .h G ) ) ) |
| 14 |
1
|
negcli |
|- -u S e. CC |
| 15 |
14 3
|
hvmulcli |
|- ( -u S .h G ) e. ~H |
| 16 |
2 15
|
hvaddcli |
|- ( F +h ( -u S .h G ) ) e. ~H |
| 17 |
|
ax-his2 |
|- ( ( F e. ~H /\ ( -u S .h G ) e. ~H /\ ( F +h ( -u S .h G ) ) e. ~H ) -> ( ( F +h ( -u S .h G ) ) .ih ( F +h ( -u S .h G ) ) ) = ( ( F .ih ( F +h ( -u S .h G ) ) ) + ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) ) ) |
| 18 |
2 15 16 17
|
mp3an |
|- ( ( F +h ( -u S .h G ) ) .ih ( F +h ( -u S .h G ) ) ) = ( ( F .ih ( F +h ( -u S .h G ) ) ) + ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) ) |
| 19 |
|
his7 |
|- ( ( F e. ~H /\ F e. ~H /\ ( -u S .h G ) e. ~H ) -> ( F .ih ( F +h ( -u S .h G ) ) ) = ( ( F .ih F ) + ( F .ih ( -u S .h G ) ) ) ) |
| 20 |
2 2 15 19
|
mp3an |
|- ( F .ih ( F +h ( -u S .h G ) ) ) = ( ( F .ih F ) + ( F .ih ( -u S .h G ) ) ) |
| 21 |
|
his5 |
|- ( ( -u S e. CC /\ F e. ~H /\ G e. ~H ) -> ( F .ih ( -u S .h G ) ) = ( ( * ` -u S ) x. ( F .ih G ) ) ) |
| 22 |
14 2 3 21
|
mp3an |
|- ( F .ih ( -u S .h G ) ) = ( ( * ` -u S ) x. ( F .ih G ) ) |
| 23 |
1
|
cjnegi |
|- ( * ` -u S ) = -u ( * ` S ) |
| 24 |
23
|
oveq1i |
|- ( ( * ` -u S ) x. ( F .ih G ) ) = ( -u ( * ` S ) x. ( F .ih G ) ) |
| 25 |
22 24
|
eqtri |
|- ( F .ih ( -u S .h G ) ) = ( -u ( * ` S ) x. ( F .ih G ) ) |
| 26 |
25
|
oveq2i |
|- ( ( F .ih F ) + ( F .ih ( -u S .h G ) ) ) = ( ( F .ih F ) + ( -u ( * ` S ) x. ( F .ih G ) ) ) |
| 27 |
20 26
|
eqtri |
|- ( F .ih ( F +h ( -u S .h G ) ) ) = ( ( F .ih F ) + ( -u ( * ` S ) x. ( F .ih G ) ) ) |
| 28 |
|
ax-his3 |
|- ( ( -u S e. CC /\ G e. ~H /\ ( F +h ( -u S .h G ) ) e. ~H ) -> ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) = ( -u S x. ( G .ih ( F +h ( -u S .h G ) ) ) ) ) |
| 29 |
14 3 16 28
|
mp3an |
|- ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) = ( -u S x. ( G .ih ( F +h ( -u S .h G ) ) ) ) |
| 30 |
|
his7 |
|- ( ( G e. ~H /\ F e. ~H /\ ( -u S .h G ) e. ~H ) -> ( G .ih ( F +h ( -u S .h G ) ) ) = ( ( G .ih F ) + ( G .ih ( -u S .h G ) ) ) ) |
| 31 |
3 2 15 30
|
mp3an |
|- ( G .ih ( F +h ( -u S .h G ) ) ) = ( ( G .ih F ) + ( G .ih ( -u S .h G ) ) ) |
| 32 |
|
his5 |
|- ( ( -u S e. CC /\ G e. ~H /\ G e. ~H ) -> ( G .ih ( -u S .h G ) ) = ( ( * ` -u S ) x. ( G .ih G ) ) ) |
| 33 |
14 3 3 32
|
mp3an |
|- ( G .ih ( -u S .h G ) ) = ( ( * ` -u S ) x. ( G .ih G ) ) |
| 34 |
33
|
oveq2i |
|- ( ( G .ih F ) + ( G .ih ( -u S .h G ) ) ) = ( ( G .ih F ) + ( ( * ` -u S ) x. ( G .ih G ) ) ) |
| 35 |
31 34
|
eqtri |
|- ( G .ih ( F +h ( -u S .h G ) ) ) = ( ( G .ih F ) + ( ( * ` -u S ) x. ( G .ih G ) ) ) |
| 36 |
35
|
oveq2i |
|- ( -u S x. ( G .ih ( F +h ( -u S .h G ) ) ) ) = ( -u S x. ( ( G .ih F ) + ( ( * ` -u S ) x. ( G .ih G ) ) ) ) |
| 37 |
3 2
|
hicli |
|- ( G .ih F ) e. CC |
| 38 |
14
|
cjcli |
|- ( * ` -u S ) e. CC |
| 39 |
3 3
|
hicli |
|- ( G .ih G ) e. CC |
| 40 |
38 39
|
mulcli |
|- ( ( * ` -u S ) x. ( G .ih G ) ) e. CC |
| 41 |
14 37 40
|
adddii |
|- ( -u S x. ( ( G .ih F ) + ( ( * ` -u S ) x. ( G .ih G ) ) ) ) = ( ( -u S x. ( G .ih F ) ) + ( -u S x. ( ( * ` -u S ) x. ( G .ih G ) ) ) ) |
| 42 |
14 38 39
|
mulassi |
|- ( ( -u S x. ( * ` -u S ) ) x. ( G .ih G ) ) = ( -u S x. ( ( * ` -u S ) x. ( G .ih G ) ) ) |
| 43 |
23
|
oveq2i |
|- ( -u S x. ( * ` -u S ) ) = ( -u S x. -u ( * ` S ) ) |
| 44 |
1
|
cjcli |
|- ( * ` S ) e. CC |
| 45 |
1 44
|
mul2negi |
|- ( -u S x. -u ( * ` S ) ) = ( S x. ( * ` S ) ) |
| 46 |
43 45
|
eqtri |
|- ( -u S x. ( * ` -u S ) ) = ( S x. ( * ` S ) ) |
| 47 |
46
|
oveq1i |
|- ( ( -u S x. ( * ` -u S ) ) x. ( G .ih G ) ) = ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) |
| 48 |
42 47
|
eqtr3i |
|- ( -u S x. ( ( * ` -u S ) x. ( G .ih G ) ) ) = ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) |
| 49 |
48
|
oveq2i |
|- ( ( -u S x. ( G .ih F ) ) + ( -u S x. ( ( * ` -u S ) x. ( G .ih G ) ) ) ) = ( ( -u S x. ( G .ih F ) ) + ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) ) |
| 50 |
41 49
|
eqtri |
|- ( -u S x. ( ( G .ih F ) + ( ( * ` -u S ) x. ( G .ih G ) ) ) ) = ( ( -u S x. ( G .ih F ) ) + ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) ) |
| 51 |
29 36 50
|
3eqtri |
|- ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) = ( ( -u S x. ( G .ih F ) ) + ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) ) |
| 52 |
27 51
|
oveq12i |
|- ( ( F .ih ( F +h ( -u S .h G ) ) ) + ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) ) = ( ( ( F .ih F ) + ( -u ( * ` S ) x. ( F .ih G ) ) ) + ( ( -u S x. ( G .ih F ) ) + ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) ) ) |
| 53 |
13 18 52
|
3eqtri |
|- ( ( F -h ( S .h G ) ) .ih ( F -h ( S .h G ) ) ) = ( ( ( F .ih F ) + ( -u ( * ` S ) x. ( F .ih G ) ) ) + ( ( -u S x. ( G .ih F ) ) + ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) ) ) |