| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normlem1.1 |
|- S e. CC |
| 2 |
|
normlem1.2 |
|- F e. ~H |
| 3 |
|
normlem1.3 |
|- G e. ~H |
| 4 |
|
normlem2.4 |
|- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
| 5 |
1
|
cjcli |
|- ( * ` S ) e. CC |
| 6 |
2 3
|
hicli |
|- ( F .ih G ) e. CC |
| 7 |
5 6
|
mulcli |
|- ( ( * ` S ) x. ( F .ih G ) ) e. CC |
| 8 |
3 2
|
hicli |
|- ( G .ih F ) e. CC |
| 9 |
1 8
|
mulcli |
|- ( S x. ( G .ih F ) ) e. CC |
| 10 |
7 9
|
cjaddi |
|- ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) + ( * ` ( S x. ( G .ih F ) ) ) ) |
| 11 |
1
|
cjcji |
|- ( * ` ( * ` S ) ) = S |
| 12 |
11
|
eqcomi |
|- S = ( * ` ( * ` S ) ) |
| 13 |
3 2
|
his1i |
|- ( G .ih F ) = ( * ` ( F .ih G ) ) |
| 14 |
12 13
|
oveq12i |
|- ( S x. ( G .ih F ) ) = ( ( * ` ( * ` S ) ) x. ( * ` ( F .ih G ) ) ) |
| 15 |
5 6
|
cjmuli |
|- ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) = ( ( * ` ( * ` S ) ) x. ( * ` ( F .ih G ) ) ) |
| 16 |
14 15
|
eqtr4i |
|- ( S x. ( G .ih F ) ) = ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) |
| 17 |
2 3
|
his1i |
|- ( F .ih G ) = ( * ` ( G .ih F ) ) |
| 18 |
17
|
oveq2i |
|- ( ( * ` S ) x. ( F .ih G ) ) = ( ( * ` S ) x. ( * ` ( G .ih F ) ) ) |
| 19 |
1 8
|
cjmuli |
|- ( * ` ( S x. ( G .ih F ) ) ) = ( ( * ` S ) x. ( * ` ( G .ih F ) ) ) |
| 20 |
18 19
|
eqtr4i |
|- ( ( * ` S ) x. ( F .ih G ) ) = ( * ` ( S x. ( G .ih F ) ) ) |
| 21 |
16 20
|
oveq12i |
|- ( ( S x. ( G .ih F ) ) + ( ( * ` S ) x. ( F .ih G ) ) ) = ( ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) + ( * ` ( S x. ( G .ih F ) ) ) ) |
| 22 |
10 21
|
eqtr4i |
|- ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( S x. ( G .ih F ) ) + ( ( * ` S ) x. ( F .ih G ) ) ) |
| 23 |
7 9
|
addcomi |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) = ( ( S x. ( G .ih F ) ) + ( ( * ` S ) x. ( F .ih G ) ) ) |
| 24 |
22 23
|
eqtr4i |
|- ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
| 25 |
7 9
|
addcli |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. CC |
| 26 |
25
|
cjrebi |
|- ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR <-> ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) |
| 27 |
24 26
|
mpbir |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR |
| 28 |
27
|
renegcli |
|- -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR |
| 29 |
4 28
|
eqeltri |
|- B e. RR |