Metamath Proof Explorer


Theorem normlem2

Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 27-Jul-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normlem1.1 S
normlem1.2 F
normlem1.3 G
normlem2.4 B = S F ih G + S G ih F
Assertion normlem2 B

Proof

Step Hyp Ref Expression
1 normlem1.1 S
2 normlem1.2 F
3 normlem1.3 G
4 normlem2.4 B = S F ih G + S G ih F
5 1 cjcli S
6 2 3 hicli F ih G
7 5 6 mulcli S F ih G
8 3 2 hicli G ih F
9 1 8 mulcli S G ih F
10 7 9 cjaddi S F ih G + S G ih F = S F ih G + S G ih F
11 1 cjcji S = S
12 11 eqcomi S = S
13 3 2 his1i G ih F = F ih G
14 12 13 oveq12i S G ih F = S F ih G
15 5 6 cjmuli S F ih G = S F ih G
16 14 15 eqtr4i S G ih F = S F ih G
17 2 3 his1i F ih G = G ih F
18 17 oveq2i S F ih G = S G ih F
19 1 8 cjmuli S G ih F = S G ih F
20 18 19 eqtr4i S F ih G = S G ih F
21 16 20 oveq12i S G ih F + S F ih G = S F ih G + S G ih F
22 10 21 eqtr4i S F ih G + S G ih F = S G ih F + S F ih G
23 7 9 addcomi S F ih G + S G ih F = S G ih F + S F ih G
24 22 23 eqtr4i S F ih G + S G ih F = S F ih G + S G ih F
25 7 9 addcli S F ih G + S G ih F
26 25 cjrebi S F ih G + S G ih F S F ih G + S G ih F = S F ih G + S G ih F
27 24 26 mpbir S F ih G + S G ih F
28 27 renegcli S F ih G + S G ih F
29 4 28 eqeltri B