Metamath Proof Explorer


Theorem normlem2

Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 27-Jul-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normlem1.1 S
normlem1.2 F
normlem1.3 G
normlem2.4 B=SFihG+SGihF
Assertion normlem2 B

Proof

Step Hyp Ref Expression
1 normlem1.1 S
2 normlem1.2 F
3 normlem1.3 G
4 normlem2.4 B=SFihG+SGihF
5 1 cjcli S
6 2 3 hicli FihG
7 5 6 mulcli SFihG
8 3 2 hicli GihF
9 1 8 mulcli SGihF
10 7 9 cjaddi SFihG+SGihF=SFihG+SGihF
11 1 cjcji S=S
12 11 eqcomi S=S
13 3 2 his1i GihF=FihG
14 12 13 oveq12i SGihF=SFihG
15 5 6 cjmuli SFihG=SFihG
16 14 15 eqtr4i SGihF=SFihG
17 2 3 his1i FihG=GihF
18 17 oveq2i SFihG=SGihF
19 1 8 cjmuli SGihF=SGihF
20 18 19 eqtr4i SFihG=SGihF
21 16 20 oveq12i SGihF+SFihG=SFihG+SGihF
22 10 21 eqtr4i SFihG+SGihF=SGihF+SFihG
23 7 9 addcomi SFihG+SGihF=SGihF+SFihG
24 22 23 eqtr4i SFihG+SGihF=SFihG+SGihF
25 7 9 addcli SFihG+SGihF
26 25 cjrebi SFihG+SGihFSFihG+SGihF=SFihG+SGihF
27 24 26 mpbir SFihG+SGihF
28 27 renegcli SFihG+SGihF
29 4 28 eqeltri B