Metamath Proof Explorer


Theorem normlem3

Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 21-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normlem1.1 S
normlem1.2 F
normlem1.3 G
normlem2.4 B=SFihG+SGihF
normlem3.5 A=GihG
normlem3.6 C=FihF
normlem3.7 R
Assertion normlem3 AR2+BR+C=FihF+SRFihG+SRGihF+R2GihG

Proof

Step Hyp Ref Expression
1 normlem1.1 S
2 normlem1.2 F
3 normlem1.3 G
4 normlem2.4 B=SFihG+SGihF
5 normlem3.5 A=GihG
6 normlem3.6 C=FihF
7 normlem3.7 R
8 3 3 hicli GihG
9 5 8 eqeltri A
10 7 recni R
11 10 sqcli R2
12 9 11 mulcli AR2
13 1 2 3 4 normlem2 B
14 13 recni B
15 14 10 mulcli BR
16 12 15 addcomi AR2+BR=BR+AR2
17 1 cjcli S
18 2 3 hicli FihG
19 17 18 mulcli SFihG
20 3 2 hicli GihF
21 1 20 mulcli SGihF
22 19 21 addcli SFihG+SGihF
23 22 10 mulneg1i SFihG+SGihFR=SFihG+SGihFR
24 4 oveq1i BR=SFihG+SGihFR
25 22 10 mulneg2i SFihG+SGihFR=SFihG+SGihFR
26 23 24 25 3eqtr4i BR=SFihG+SGihFR
27 10 negcli R
28 19 21 27 adddiri SFihG+SGihFR=SFihGR+SGihFR
29 17 18 27 mul32i SFihGR=SRFihG
30 1 20 27 mul32i SGihFR=SRGihF
31 29 30 oveq12i SFihGR+SGihFR=SRFihG+SRGihF
32 26 28 31 3eqtri BR=SRFihG+SRGihF
33 5 oveq2i R2A=R2GihG
34 11 9 33 mulcomli AR2=R2GihG
35 32 34 oveq12i BR+AR2=SRFihG+SRGihF+R2GihG
36 17 27 mulcli SR
37 36 18 mulcli SRFihG
38 1 27 mulcli SR
39 38 20 mulcli SRGihF
40 11 8 mulcli R2GihG
41 37 39 40 addassi SRFihG+SRGihF+R2GihG=SRFihG+SRGihF+R2GihG
42 16 35 41 3eqtri AR2+BR=SRFihG+SRGihF+R2GihG
43 6 42 oveq12i C+AR2+BR=FihF+SRFihG+SRGihF+R2GihG
44 12 15 addcli AR2+BR
45 2 2 hicli FihF
46 6 45 eqeltri C
47 44 46 addcomi AR2+BR+C=C+AR2+BR
48 39 40 addcli SRGihF+R2GihG
49 45 37 48 addassi FihF+SRFihG+SRGihF+R2GihG=FihF+SRFihG+SRGihF+R2GihG
50 43 47 49 3eqtr4i AR2+BR+C=FihF+SRFihG+SRGihF+R2GihG