Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | |- S e. CC | |
| normlem1.2 | |- F e. ~H | ||
| normlem1.3 | |- G e. ~H | ||
| normlem2.4 | |- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) | ||
| normlem3.5 | |- A = ( G .ih G ) | ||
| normlem3.6 | |- C = ( F .ih F ) | ||
| normlem4.7 | |- R e. RR | ||
| normlem4.8 | |- ( abs ` S ) = 1 | ||
| Assertion | normlem4 | |- ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) = ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | normlem1.1 | |- S e. CC | |
| 2 | normlem1.2 | |- F e. ~H | |
| 3 | normlem1.3 | |- G e. ~H | |
| 4 | normlem2.4 | |- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) | |
| 5 | normlem3.5 | |- A = ( G .ih G ) | |
| 6 | normlem3.6 | |- C = ( F .ih F ) | |
| 7 | normlem4.7 | |- R e. RR | |
| 8 | normlem4.8 | |- ( abs ` S ) = 1 | |
| 9 | 1 2 3 7 8 | normlem1 | |- ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) = ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) | 
| 10 | 1 2 3 4 5 6 7 | normlem3 | |- ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) = ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) | 
| 11 | 9 10 | eqtr4i | |- ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) = ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) |