| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normlem1.1 |  |-  S e. CC | 
						
							| 2 |  | normlem1.2 |  |-  F e. ~H | 
						
							| 3 |  | normlem1.3 |  |-  G e. ~H | 
						
							| 4 |  | normlem2.4 |  |-  B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) | 
						
							| 5 |  | normlem3.5 |  |-  A = ( G .ih G ) | 
						
							| 6 |  | normlem3.6 |  |-  C = ( F .ih F ) | 
						
							| 7 |  | normlem4.7 |  |-  R e. RR | 
						
							| 8 |  | normlem4.8 |  |-  ( abs ` S ) = 1 | 
						
							| 9 | 7 | recni |  |-  R e. CC | 
						
							| 10 | 1 9 | mulcli |  |-  ( S x. R ) e. CC | 
						
							| 11 | 10 3 | hvmulcli |  |-  ( ( S x. R ) .h G ) e. ~H | 
						
							| 12 | 2 11 | hvsubcli |  |-  ( F -h ( ( S x. R ) .h G ) ) e. ~H | 
						
							| 13 |  | hiidge0 |  |-  ( ( F -h ( ( S x. R ) .h G ) ) e. ~H -> 0 <_ ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) ) | 
						
							| 14 | 12 13 | ax-mp |  |-  0 <_ ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 | normlem4 |  |-  ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) = ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) | 
						
							| 16 | 14 15 | breqtri |  |-  0 <_ ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) |