| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normlem1.1 |  |-  S e. CC | 
						
							| 2 |  | normlem1.2 |  |-  F e. ~H | 
						
							| 3 |  | normlem1.3 |  |-  G e. ~H | 
						
							| 4 |  | normlem2.4 |  |-  B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) | 
						
							| 5 |  | normlem3.5 |  |-  A = ( G .ih G ) | 
						
							| 6 |  | normlem3.6 |  |-  C = ( F .ih F ) | 
						
							| 7 |  | normlem6.7 |  |-  ( abs ` S ) = 1 | 
						
							| 8 |  | hiidrcl |  |-  ( G e. ~H -> ( G .ih G ) e. RR ) | 
						
							| 9 | 3 8 | ax-mp |  |-  ( G .ih G ) e. RR | 
						
							| 10 | 5 9 | eqeltri |  |-  A e. RR | 
						
							| 11 | 10 | a1i |  |-  ( T. -> A e. RR ) | 
						
							| 12 | 1 2 3 4 | normlem2 |  |-  B e. RR | 
						
							| 13 | 12 | a1i |  |-  ( T. -> B e. RR ) | 
						
							| 14 |  | hiidrcl |  |-  ( F e. ~H -> ( F .ih F ) e. RR ) | 
						
							| 15 | 2 14 | ax-mp |  |-  ( F .ih F ) e. RR | 
						
							| 16 | 6 15 | eqeltri |  |-  C e. RR | 
						
							| 17 | 16 | a1i |  |-  ( T. -> C e. RR ) | 
						
							| 18 |  | oveq1 |  |-  ( x = if ( x e. RR , x , 0 ) -> ( x ^ 2 ) = ( if ( x e. RR , x , 0 ) ^ 2 ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( x = if ( x e. RR , x , 0 ) -> ( A x. ( x ^ 2 ) ) = ( A x. ( if ( x e. RR , x , 0 ) ^ 2 ) ) ) | 
						
							| 20 |  | oveq2 |  |-  ( x = if ( x e. RR , x , 0 ) -> ( B x. x ) = ( B x. if ( x e. RR , x , 0 ) ) ) | 
						
							| 21 | 19 20 | oveq12d |  |-  ( x = if ( x e. RR , x , 0 ) -> ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) = ( ( A x. ( if ( x e. RR , x , 0 ) ^ 2 ) ) + ( B x. if ( x e. RR , x , 0 ) ) ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( x = if ( x e. RR , x , 0 ) -> ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) = ( ( ( A x. ( if ( x e. RR , x , 0 ) ^ 2 ) ) + ( B x. if ( x e. RR , x , 0 ) ) ) + C ) ) | 
						
							| 23 | 22 | breq2d |  |-  ( x = if ( x e. RR , x , 0 ) -> ( 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) <-> 0 <_ ( ( ( A x. ( if ( x e. RR , x , 0 ) ^ 2 ) ) + ( B x. if ( x e. RR , x , 0 ) ) ) + C ) ) ) | 
						
							| 24 |  | 0re |  |-  0 e. RR | 
						
							| 25 | 24 | elimel |  |-  if ( x e. RR , x , 0 ) e. RR | 
						
							| 26 | 1 2 3 4 5 6 25 7 | normlem5 |  |-  0 <_ ( ( ( A x. ( if ( x e. RR , x , 0 ) ^ 2 ) ) + ( B x. if ( x e. RR , x , 0 ) ) ) + C ) | 
						
							| 27 | 23 26 | dedth |  |-  ( x e. RR -> 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( T. /\ x e. RR ) -> 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) | 
						
							| 29 | 11 13 17 28 | discr |  |-  ( T. -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 ) | 
						
							| 30 | 29 | mptru |  |-  ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 | 
						
							| 31 | 12 | resqcli |  |-  ( B ^ 2 ) e. RR | 
						
							| 32 |  | 4re |  |-  4 e. RR | 
						
							| 33 | 10 16 | remulcli |  |-  ( A x. C ) e. RR | 
						
							| 34 | 32 33 | remulcli |  |-  ( 4 x. ( A x. C ) ) e. RR | 
						
							| 35 | 31 34 24 | lesubadd2i |  |-  ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 <-> ( B ^ 2 ) <_ ( ( 4 x. ( A x. C ) ) + 0 ) ) | 
						
							| 36 | 30 35 | mpbi |  |-  ( B ^ 2 ) <_ ( ( 4 x. ( A x. C ) ) + 0 ) | 
						
							| 37 | 34 | recni |  |-  ( 4 x. ( A x. C ) ) e. CC | 
						
							| 38 | 37 | addridi |  |-  ( ( 4 x. ( A x. C ) ) + 0 ) = ( 4 x. ( A x. C ) ) | 
						
							| 39 | 36 38 | breqtri |  |-  ( B ^ 2 ) <_ ( 4 x. ( A x. C ) ) | 
						
							| 40 | 12 | sqge0i |  |-  0 <_ ( B ^ 2 ) | 
						
							| 41 |  | 4pos |  |-  0 < 4 | 
						
							| 42 | 24 32 41 | ltleii |  |-  0 <_ 4 | 
						
							| 43 |  | hiidge0 |  |-  ( G e. ~H -> 0 <_ ( G .ih G ) ) | 
						
							| 44 | 3 43 | ax-mp |  |-  0 <_ ( G .ih G ) | 
						
							| 45 | 44 5 | breqtrri |  |-  0 <_ A | 
						
							| 46 |  | hiidge0 |  |-  ( F e. ~H -> 0 <_ ( F .ih F ) ) | 
						
							| 47 | 2 46 | ax-mp |  |-  0 <_ ( F .ih F ) | 
						
							| 48 | 47 6 | breqtrri |  |-  0 <_ C | 
						
							| 49 | 10 16 | mulge0i |  |-  ( ( 0 <_ A /\ 0 <_ C ) -> 0 <_ ( A x. C ) ) | 
						
							| 50 | 45 48 49 | mp2an |  |-  0 <_ ( A x. C ) | 
						
							| 51 | 32 33 | mulge0i |  |-  ( ( 0 <_ 4 /\ 0 <_ ( A x. C ) ) -> 0 <_ ( 4 x. ( A x. C ) ) ) | 
						
							| 52 | 42 50 51 | mp2an |  |-  0 <_ ( 4 x. ( A x. C ) ) | 
						
							| 53 | 31 34 | sqrtlei |  |-  ( ( 0 <_ ( B ^ 2 ) /\ 0 <_ ( 4 x. ( A x. C ) ) ) -> ( ( B ^ 2 ) <_ ( 4 x. ( A x. C ) ) <-> ( sqrt ` ( B ^ 2 ) ) <_ ( sqrt ` ( 4 x. ( A x. C ) ) ) ) ) | 
						
							| 54 | 40 52 53 | mp2an |  |-  ( ( B ^ 2 ) <_ ( 4 x. ( A x. C ) ) <-> ( sqrt ` ( B ^ 2 ) ) <_ ( sqrt ` ( 4 x. ( A x. C ) ) ) ) | 
						
							| 55 | 39 54 | mpbi |  |-  ( sqrt ` ( B ^ 2 ) ) <_ ( sqrt ` ( 4 x. ( A x. C ) ) ) | 
						
							| 56 | 12 | absrei |  |-  ( abs ` B ) = ( sqrt ` ( B ^ 2 ) ) | 
						
							| 57 | 32 33 42 50 | sqrtmulii |  |-  ( sqrt ` ( 4 x. ( A x. C ) ) ) = ( ( sqrt ` 4 ) x. ( sqrt ` ( A x. C ) ) ) | 
						
							| 58 |  | sqrt4 |  |-  ( sqrt ` 4 ) = 2 | 
						
							| 59 | 10 16 45 48 | sqrtmulii |  |-  ( sqrt ` ( A x. C ) ) = ( ( sqrt ` A ) x. ( sqrt ` C ) ) | 
						
							| 60 | 58 59 | oveq12i |  |-  ( ( sqrt ` 4 ) x. ( sqrt ` ( A x. C ) ) ) = ( 2 x. ( ( sqrt ` A ) x. ( sqrt ` C ) ) ) | 
						
							| 61 | 57 60 | eqtr2i |  |-  ( 2 x. ( ( sqrt ` A ) x. ( sqrt ` C ) ) ) = ( sqrt ` ( 4 x. ( A x. C ) ) ) | 
						
							| 62 | 55 56 61 | 3brtr4i |  |-  ( abs ` B ) <_ ( 2 x. ( ( sqrt ` A ) x. ( sqrt ` C ) ) ) |