Step |
Hyp |
Ref |
Expression |
1 |
|
normlem1.1 |
|
2 |
|
normlem1.2 |
|
3 |
|
normlem1.3 |
|
4 |
|
normlem2.4 |
|
5 |
|
normlem3.5 |
|
6 |
|
normlem3.6 |
|
7 |
|
normlem6.7 |
|
8 |
|
hiidrcl |
|
9 |
3 8
|
ax-mp |
|
10 |
5 9
|
eqeltri |
|
11 |
10
|
a1i |
|
12 |
1 2 3 4
|
normlem2 |
|
13 |
12
|
a1i |
|
14 |
|
hiidrcl |
|
15 |
2 14
|
ax-mp |
|
16 |
6 15
|
eqeltri |
|
17 |
16
|
a1i |
|
18 |
|
oveq1 |
|
19 |
18
|
oveq2d |
|
20 |
|
oveq2 |
|
21 |
19 20
|
oveq12d |
|
22 |
21
|
oveq1d |
|
23 |
22
|
breq2d |
|
24 |
|
0re |
|
25 |
24
|
elimel |
|
26 |
1 2 3 4 5 6 25 7
|
normlem5 |
|
27 |
23 26
|
dedth |
|
28 |
27
|
adantl |
|
29 |
11 13 17 28
|
discr |
|
30 |
29
|
mptru |
|
31 |
12
|
resqcli |
|
32 |
|
4re |
|
33 |
10 16
|
remulcli |
|
34 |
32 33
|
remulcli |
|
35 |
31 34 24
|
lesubadd2i |
|
36 |
30 35
|
mpbi |
|
37 |
34
|
recni |
|
38 |
37
|
addid1i |
|
39 |
36 38
|
breqtri |
|
40 |
12
|
sqge0i |
|
41 |
|
4pos |
|
42 |
24 32 41
|
ltleii |
|
43 |
|
hiidge0 |
|
44 |
3 43
|
ax-mp |
|
45 |
44 5
|
breqtrri |
|
46 |
|
hiidge0 |
|
47 |
2 46
|
ax-mp |
|
48 |
47 6
|
breqtrri |
|
49 |
10 16
|
mulge0i |
|
50 |
45 48 49
|
mp2an |
|
51 |
32 33
|
mulge0i |
|
52 |
42 50 51
|
mp2an |
|
53 |
31 34
|
sqrtlei |
|
54 |
40 52 53
|
mp2an |
|
55 |
39 54
|
mpbi |
|
56 |
12
|
absrei |
|
57 |
32 33 42 50
|
sqrtmulii |
|
58 |
|
sqrt4 |
|
59 |
10 16 45 48
|
sqrtmulii |
|
60 |
58 59
|
oveq12i |
|
61 |
57 60
|
eqtr2i |
|
62 |
55 56 61
|
3brtr4i |
|