Metamath Proof Explorer


Theorem normlem7

Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normlem1.1 S
normlem1.2 F
normlem1.3 G
normlem7.4 S=1
Assertion normlem7 SFihG+SGihF2GihGFihF

Proof

Step Hyp Ref Expression
1 normlem1.1 S
2 normlem1.2 F
3 normlem1.3 G
4 normlem7.4 S=1
5 eqid SFihG+SGihF=SFihG+SGihF
6 1 2 3 5 normlem2 SFihG+SGihF
7 1 cjcli S
8 2 3 hicli FihG
9 7 8 mulcli SFihG
10 3 2 hicli GihF
11 1 10 mulcli SGihF
12 9 11 addcli SFihG+SGihF
13 12 negrebi SFihG+SGihFSFihG+SGihF
14 6 13 mpbi SFihG+SGihF
15 14 leabsi SFihG+SGihFSFihG+SGihF
16 12 absnegi SFihG+SGihF=SFihG+SGihF
17 15 16 breqtrri SFihG+SGihFSFihG+SGihF
18 eqid GihG=GihG
19 eqid FihF=FihF
20 1 2 3 5 18 19 4 normlem6 SFihG+SGihF2GihGFihF
21 12 negcli SFihG+SGihF
22 21 abscli SFihG+SGihF
23 2re 2
24 hiidge0 G0GihG
25 hiidrcl GGihG
26 3 25 ax-mp GihG
27 26 sqrtcli 0GihGGihG
28 3 24 27 mp2b GihG
29 hiidge0 F0FihF
30 hiidrcl FFihF
31 2 30 ax-mp FihF
32 31 sqrtcli 0FihFFihF
33 2 29 32 mp2b FihF
34 28 33 remulcli GihGFihF
35 23 34 remulcli 2GihGFihF
36 14 22 35 letri SFihG+SGihFSFihG+SGihFSFihG+SGihF2GihGFihFSFihG+SGihF2GihGFihF
37 17 20 36 mp2an SFihG+SGihF2GihGFihF