| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normlem1.1 |
|- S e. CC |
| 2 |
|
normlem1.2 |
|- F e. ~H |
| 3 |
|
normlem1.3 |
|- G e. ~H |
| 4 |
|
normlem7.4 |
|- ( abs ` S ) = 1 |
| 5 |
|
eqid |
|- -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
| 6 |
1 2 3 5
|
normlem2 |
|- -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR |
| 7 |
1
|
cjcli |
|- ( * ` S ) e. CC |
| 8 |
2 3
|
hicli |
|- ( F .ih G ) e. CC |
| 9 |
7 8
|
mulcli |
|- ( ( * ` S ) x. ( F .ih G ) ) e. CC |
| 10 |
3 2
|
hicli |
|- ( G .ih F ) e. CC |
| 11 |
1 10
|
mulcli |
|- ( S x. ( G .ih F ) ) e. CC |
| 12 |
9 11
|
addcli |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. CC |
| 13 |
12
|
negrebi |
|- ( -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR <-> ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR ) |
| 14 |
6 13
|
mpbi |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR |
| 15 |
14
|
leabsi |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) <_ ( abs ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) |
| 16 |
12
|
absnegi |
|- ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( abs ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) |
| 17 |
15 16
|
breqtrri |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) <_ ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) |
| 18 |
|
eqid |
|- ( G .ih G ) = ( G .ih G ) |
| 19 |
|
eqid |
|- ( F .ih F ) = ( F .ih F ) |
| 20 |
1 2 3 5 18 19 4
|
normlem6 |
|- ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) <_ ( 2 x. ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) ) |
| 21 |
12
|
negcli |
|- -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. CC |
| 22 |
21
|
abscli |
|- ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) e. RR |
| 23 |
|
2re |
|- 2 e. RR |
| 24 |
|
hiidge0 |
|- ( G e. ~H -> 0 <_ ( G .ih G ) ) |
| 25 |
|
hiidrcl |
|- ( G e. ~H -> ( G .ih G ) e. RR ) |
| 26 |
3 25
|
ax-mp |
|- ( G .ih G ) e. RR |
| 27 |
26
|
sqrtcli |
|- ( 0 <_ ( G .ih G ) -> ( sqrt ` ( G .ih G ) ) e. RR ) |
| 28 |
3 24 27
|
mp2b |
|- ( sqrt ` ( G .ih G ) ) e. RR |
| 29 |
|
hiidge0 |
|- ( F e. ~H -> 0 <_ ( F .ih F ) ) |
| 30 |
|
hiidrcl |
|- ( F e. ~H -> ( F .ih F ) e. RR ) |
| 31 |
2 30
|
ax-mp |
|- ( F .ih F ) e. RR |
| 32 |
31
|
sqrtcli |
|- ( 0 <_ ( F .ih F ) -> ( sqrt ` ( F .ih F ) ) e. RR ) |
| 33 |
2 29 32
|
mp2b |
|- ( sqrt ` ( F .ih F ) ) e. RR |
| 34 |
28 33
|
remulcli |
|- ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) e. RR |
| 35 |
23 34
|
remulcli |
|- ( 2 x. ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) ) e. RR |
| 36 |
14 22 35
|
letri |
|- ( ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) <_ ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) /\ ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) <_ ( 2 x. ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) ) ) -> ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) <_ ( 2 x. ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) ) ) |
| 37 |
17 20 36
|
mp2an |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) <_ ( 2 x. ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) ) |