Metamath Proof Explorer


Theorem normlem7

Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem7.4 ( abs ‘ 𝑆 ) = 1
Assertion normlem7 ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) )

Proof

Step Hyp Ref Expression
1 normlem1.1 𝑆 ∈ ℂ
2 normlem1.2 𝐹 ∈ ℋ
3 normlem1.3 𝐺 ∈ ℋ
4 normlem7.4 ( abs ‘ 𝑆 ) = 1
5 eqid - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) )
6 1 2 3 5 normlem2 - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ
7 1 cjcli ( ∗ ‘ 𝑆 ) ∈ ℂ
8 2 3 hicli ( 𝐹 ·ih 𝐺 ) ∈ ℂ
9 7 8 mulcli ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ∈ ℂ
10 3 2 hicli ( 𝐺 ·ih 𝐹 ) ∈ ℂ
11 1 10 mulcli ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ∈ ℂ
12 9 11 addcli ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℂ
13 12 negrebi ( - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ ↔ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ )
14 6 13 mpbi ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ
15 14 leabsi ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( abs ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) )
16 12 absnegi ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) = ( abs ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) )
17 15 16 breqtrri ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) )
18 eqid ( 𝐺 ·ih 𝐺 ) = ( 𝐺 ·ih 𝐺 )
19 eqid ( 𝐹 ·ih 𝐹 ) = ( 𝐹 ·ih 𝐹 )
20 1 2 3 5 18 19 4 normlem6 ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) )
21 12 negcli - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℂ
22 21 abscli ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ∈ ℝ
23 2re 2 ∈ ℝ
24 hiidge0 ( 𝐺 ∈ ℋ → 0 ≤ ( 𝐺 ·ih 𝐺 ) )
25 hiidrcl ( 𝐺 ∈ ℋ → ( 𝐺 ·ih 𝐺 ) ∈ ℝ )
26 3 25 ax-mp ( 𝐺 ·ih 𝐺 ) ∈ ℝ
27 26 sqrtcli ( 0 ≤ ( 𝐺 ·ih 𝐺 ) → ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) ∈ ℝ )
28 3 24 27 mp2b ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) ∈ ℝ
29 hiidge0 ( 𝐹 ∈ ℋ → 0 ≤ ( 𝐹 ·ih 𝐹 ) )
30 hiidrcl ( 𝐹 ∈ ℋ → ( 𝐹 ·ih 𝐹 ) ∈ ℝ )
31 2 30 ax-mp ( 𝐹 ·ih 𝐹 ) ∈ ℝ
32 31 sqrtcli ( 0 ≤ ( 𝐹 ·ih 𝐹 ) → ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ∈ ℝ )
33 2 29 32 mp2b ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ∈ ℝ
34 28 33 remulcli ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ∈ ℝ
35 23 34 remulcli ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) ∈ ℝ
36 14 22 35 letri ( ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ∧ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) ) → ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) )
37 17 20 36 mp2an ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) )