| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normlem1.1 | ⊢ 𝑆  ∈  ℂ | 
						
							| 2 |  | normlem1.2 | ⊢ 𝐹  ∈   ℋ | 
						
							| 3 |  | normlem1.3 | ⊢ 𝐺  ∈   ℋ | 
						
							| 4 |  | normlem2.4 | ⊢ 𝐵  =  - ( ( ( ∗ ‘ 𝑆 )  ·  ( 𝐹  ·ih  𝐺 ) )  +  ( 𝑆  ·  ( 𝐺  ·ih  𝐹 ) ) ) | 
						
							| 5 |  | normlem3.5 | ⊢ 𝐴  =  ( 𝐺  ·ih  𝐺 ) | 
						
							| 6 |  | normlem3.6 | ⊢ 𝐶  =  ( 𝐹  ·ih  𝐹 ) | 
						
							| 7 |  | normlem4.7 | ⊢ 𝑅  ∈  ℝ | 
						
							| 8 |  | normlem4.8 | ⊢ ( abs ‘ 𝑆 )  =  1 | 
						
							| 9 | 7 | recni | ⊢ 𝑅  ∈  ℂ | 
						
							| 10 | 1 9 | mulcli | ⊢ ( 𝑆  ·  𝑅 )  ∈  ℂ | 
						
							| 11 | 10 3 | hvmulcli | ⊢ ( ( 𝑆  ·  𝑅 )  ·ℎ  𝐺 )  ∈   ℋ | 
						
							| 12 | 2 11 | hvsubcli | ⊢ ( 𝐹  −ℎ  ( ( 𝑆  ·  𝑅 )  ·ℎ  𝐺 ) )  ∈   ℋ | 
						
							| 13 |  | hiidge0 | ⊢ ( ( 𝐹  −ℎ  ( ( 𝑆  ·  𝑅 )  ·ℎ  𝐺 ) )  ∈   ℋ  →  0  ≤  ( ( 𝐹  −ℎ  ( ( 𝑆  ·  𝑅 )  ·ℎ  𝐺 ) )  ·ih  ( 𝐹  −ℎ  ( ( 𝑆  ·  𝑅 )  ·ℎ  𝐺 ) ) ) ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ 0  ≤  ( ( 𝐹  −ℎ  ( ( 𝑆  ·  𝑅 )  ·ℎ  𝐺 ) )  ·ih  ( 𝐹  −ℎ  ( ( 𝑆  ·  𝑅 )  ·ℎ  𝐺 ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 | normlem4 | ⊢ ( ( 𝐹  −ℎ  ( ( 𝑆  ·  𝑅 )  ·ℎ  𝐺 ) )  ·ih  ( 𝐹  −ℎ  ( ( 𝑆  ·  𝑅 )  ·ℎ  𝐺 ) ) )  =  ( ( ( 𝐴  ·  ( 𝑅 ↑ 2 ) )  +  ( 𝐵  ·  𝑅 ) )  +  𝐶 ) | 
						
							| 16 | 14 15 | breqtri | ⊢ 0  ≤  ( ( ( 𝐴  ·  ( 𝑅 ↑ 2 ) )  +  ( 𝐵  ·  𝑅 ) )  +  𝐶 ) |