Metamath Proof Explorer


Theorem notbinot2

Description: Commutation rule between negation and biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Assertion notbinot2
|- ( -. ( ph <-> ps ) <-> ( -. ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 nbbn
 |-  ( ( -. ph <-> ps ) <-> -. ( ph <-> ps ) )
2 1 bicomi
 |-  ( -. ( ph <-> ps ) <-> ( -. ph <-> ps ) )